LIPIcs.ESA.2022.86.pdf
- Filesize: 0.69 MB
- 10 pages
The Robinson-Schensted-Knuth (RSK) correspondence is a fundamental concept in combinatorics and representation theory. It is defined as a certain bijection between permutations and pairs of Young tableaux of a given order. We consider the RSK correspondence as an algorithmic problem, along with the closely related k-chain problem. We give a simple, direct description of the symmetric RSK algorithm, which is implied by the k-chain algorithms of Viennot and of Felsner and Wernisch. We also show how the doubling search of Bentley and Yao can be used as a subroutine by the symmetric RSK algorithm, replacing the default binary search. Surprisingly, such a straightforward replacement improves the asymptotic worst-case running time for the RSK correspondence that has been best known since 1998. A similar improvement also holds for the average running time of RSK on uniformly random permutations.
Feedback for Dagstuhl Publishing