LIPIcs.WABI.2022.12.pdf
- Filesize: 0.87 MB
- 20 pages
Motivation. In biological sequence analysis, alignment-free (also known as k-mer-based) methods are increasingly replacing mapping- and alignment-based methods for various applications. A basic step of such methods consists of building a table of all k-mers of a given set of sequences (a reference genome or a dataset of sequenced reads) and their counts. Over the past years, efficient methods and tools for k-mer counting have been developed. In a different line of work, the use of gapped k-mers has been shown to offer advantages over the use of the standard contiguous k-mers. However, no tool seems to be available that is able to count gapped k-mers with the same efficiency as contiguous k-mers. One reason is that the most efficient k-mer counters use minimizers (of a length m < k) to group k-mers into buckets, such that many consecutive k-mers are classified into the same bucket. This approach leads to cache-friendly (and hence extremely fast) algorithms, but the approach does not transfer easily to gapped k-mers. Consequently, the existing efficient k-mer counters cannot be trivially modified to count gapped k-mers with the same efficiency. Results. We present a different approach that is equally applicable to contiguous k-mers and gapped k-mers. We use multi-way bucketed Cuckoo hash tables to efficiently store (gapped) k-mers and their counts. We also describe a method to parallelize counting over multiple threads without using locks: We subdivide the hash table into independent subtables, and use a producer-consumer model, such that each thread serves one subtable. This requires designing Cuckoo hash functions with the property that all alternative locations for each k-mer are located in the same subtable. Compared to some of the fastest contiguous k-mer counters, our approach is of comparable speed, or even faster, on large datasets, and it is the only one that supports gapped k-mers.
Feedback for Dagstuhl Publishing