OASIcs.ATMOS.2022.2.pdf
- Filesize: 0.68 MB
- 13 pages
We present an efficient algorithm that finds a globally optimal solution to the 2D Free Flight Trajectory Optimization Problem (aka Zermelo Navigation Problem) up to arbitrary precision in finite time. The algorithm combines a discrete and a continuous optimization phase. In the discrete phase, a set of candidate paths that densely covers the trajectory space is created on a directed auxiliary graph. Then Yen’s algorithm provides a promising set of discrete candidate paths which subsequently undergo a locally convergent refinement stage. Provided that the auxiliary graph is sufficiently dense, the method finds a path that lies within the convex domain around the global minimizer. From this starting point, the second stage will converge rapidly to the optimum. The density of the auxiliary graph depends solely on the wind field, and not on the accuracy of the solution, such that the method inherits the superior asymptotic convergence properties of the optimal control stage.
Feedback for Dagstuhl Publishing