LIPIcs.APPROX-RANDOM.2022.23.pdf
- Filesize: 0.71 MB
- 22 pages
Hrubeš and Wigderson [Hrubeš and Wigderson, 2015] initiated the complexity-theoretic study of noncommutative formulas with inverse gates. They introduced the Rational Identity Testing (RIT) problem which is to decide whether a noncommutative rational formula computes zero in the free skew field. In the white-box setting, there are deterministic polynomial-time algorithms due to Garg, Gurvits, Oliveira, and Wigderson [Ankit Garg et al., 2016] and Ivanyos, Qiao, and Subrahmanyam [Ivanyos et al., 2018]. A central open problem in this area is to design an efficient deterministic black-box identity testing algorithm for rational formulas. In this paper, we solve this for the first nested inverse case. More precisely, we obtain a deterministic quasipolynomial-time black-box RIT algorithm for noncommutative rational formulas of inversion height two via a hitting set construction. Several new technical ideas are involved in the hitting set construction, including concepts from matrix coefficient realization theory [Volčič, 2018] and properties of cyclic division algebras [T.Y. Lam, 2001]. En route to the proof, an important step is to embed the hitting set of Forbes and Shpilka for noncommutative formulas [Michael A. Forbes and Amir Shpilka, 2013] inside a cyclic division algebra of small index.
Feedback for Dagstuhl Publishing