LIPIcs.ISAAC.2022.21.pdf
- Filesize: 0.7 MB
- 13 pages
The B^ε-tree [Brodal and Fagerberg 2003] is a simple I/O-efficient external-memory-model data structure that supports updates orders of magnitude faster than B-tree with a query performance comparable to the B-tree: for any positive constant ε < 1 insertions and deletions take O(1/B^(1-ε) log_B N) time (rather than O(log_BN) time for the classic B-tree), queries take O(log_B N) time and range queries returning k items take O(log_B N + k/B) time. Although the B^ε-tree has an optimal update/query tradeoff, the runtimes are amortized. Another structure, the write-optimized skip list, introduced by Bender et al. [PODS 2017], has the same performance as the B^ε-tree but with runtimes that are randomized rather than amortized. In this paper, we present a variant of the B^ε-tree with deterministic worst-case running times that are identical to the original’s amortized running times.
Feedback for Dagstuhl Publishing