On Reverse Shortest Paths in Geometric Proximity Graphs

Authors Pankaj K. Agarwal , Matthew J. Katz , Micha Sharir



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2022.42.pdf
  • Filesize: 0.97 MB
  • 19 pages

Document Identifiers

Author Details

Pankaj K. Agarwal
  • Department of Computer Science, Duke University, Durham NC, USA
Matthew J. Katz
  • Department of Computer Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
Micha Sharir
  • School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Cite AsGet BibTex

Pankaj K. Agarwal, Matthew J. Katz, and Micha Sharir. On Reverse Shortest Paths in Geometric Proximity Graphs. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.ISAAC.2022.42

Abstract

Let S be a set of n geometric objects of constant complexity (e.g., points, line segments, disks, ellipses) in ℝ², and let ϱ: S× S → ℝ_{≥ 0} be a distance function on S. For a parameter r ≥ 0, we define the proximity graph G(r) = (S,E) where E = {(e₁,e₂) ∈ S×S ∣ e₁≠e₂, ϱ(e₁,e₂) ≤ r}. Given S, s,t ∈ S, and an integer k ≥ 1, the reverse-shortest-path (RSP) problem asks for computing the smallest value r^* ≥ 0 such that G(r^*) contains a path from s to t of length at most k. In this paper we present a general randomized technique that solves the RSP problem efficiently for a large family of geometric objects and distance functions. Using standard, and sometimes more involved, semi-algebraic range-searching techniques, we first give an efficient algorithm for the decision problem, namely, given a value r ≥ 0, determine whether G(r) contains a path from s to t of length at most k. Next, we adapt our decision algorithm and combine it with a random-sampling method to compute r^*, by efficiently performing a binary search over an implicit set of O(n²) candidate values that contains r^*. We illustrate the versatility of our general technique by applying it to a variety of geometric proximity graphs. For example, we obtain (i) an O^*(n^{4/3}) expected-time randomized algorithm (where O^*(⋅) hides polylog(n) factors) for the case where S is a set of pairwise-disjoint line segments in ℝ² and ϱ(e₁,e₂) = min_{x ∈ e₁, y ∈ e₂} ‖x-y‖ (where ‖⋅‖ is the Euclidean distance), and (ii) an O^*(n+m^{4/3}) expected-time randomized algorithm for the case where S is a set of m points lying on an x-monotone polygonal chain T with n vertices, and ϱ(p,q), for p,q ∈ S, is the smallest value h such that the points p' := p+(0,h) and q' := q+(0,h) are visible to each other, i.e., all points on the segment p'q' lie above or on the polygonal chain T.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Geometric optimization
  • proximity graphs
  • semi-algebraic range searching
  • reverse shortest path

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. P. K. Agarwal. Simplex range searching and its variants: A review. In Journey through Discrete Mathematics: A Tribute to Jiří Matoušek, pages 1-30. Springer Verlag, Berlin-Heidelberg, 2017. Google Scholar
  2. P. K. Agarwal, B. Aronov, E. Ezra, and J. Zahl. An efficient algorithm for generalized polynomial partitioning and its applications. SIAM J. Comput., 50:760-787, 2021. Google Scholar
  3. P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri. Selecting distances in the plane. Algorithmica, 9:495-514, 1993. Google Scholar
  4. P. K. Agarwal, J. Matoušek, and M. Sharir. On range searching with semialgebraic sets II. SIAM J. Comput., 42:2039-2062, 2013. Google Scholar
  5. P. K. Agarwal, M. H. Overmars, and M. Sharir. Computing maximally separated sets in the plane. SIAM J. Comput., 36(3):815-834, 2006. Google Scholar
  6. P. K. Agarwal and K. R. Varadarajan. Efficient algorithms for approximating polygonal chains. Discrete Comput. Geom., 23(2):273-291, 2000. Google Scholar
  7. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics 10. Springer-Verlag, Berlin, 2nd edition, 2006. Google Scholar
  8. H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is NP-hard. Comput. Geom., 9(1-2):3-24, 1998. Google Scholar
  9. D. Burton and P. L. Toint. On an instance of the inverse shortest paths problem. Math. Program., 53:45-61, 1992. Google Scholar
  10. S. Cabello and M. Jejčič. Shortest paths in intersection graphs of unit disks. Comput. Geom. Theory Appls., 48:360-367, 2015. Google Scholar
  11. T. M. Chan. On enumerating and selecting distances. Int. J. Comput. Geom. Appl., 11(3):291-304, 2001. Google Scholar
  12. T. M. Chan and D. Skrepetos. All-pairs shortest paths in unit-disk graphs in slightly subquadratic time. In 27th Internat. Sympos. on Algorithms and Computation, pages 24:1-24:13, 2016. Google Scholar
  13. T. M. Chan and D. Skrepetos. All-pairs shortest paths in geometric intersection graphs. J. Comput. Geom., 10(1):27-41, 2019. Google Scholar
  14. T. M. Chan and D. Skrepetos. Approximate shortest paths and distance oracles in weighted unit-disk graphs. J. Comput. Geom., 10(2):3-20, 2019. Google Scholar
  15. B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Math., 86(1-3):165-177, 1990. Google Scholar
  16. T. Cui and D. S. Hochbaum. Complexity of some inverse shortest path lengths problems. Networks, 56(1):20-29, 2010. Google Scholar
  17. G. D. da Fonseca, V. G. P. de Sá, and C. M. H. de Figueiredo. Shifting coresets: Obtaining linear-time approximations for unit disk graphs and other geometric intersection graphs. Int. J. Comput. Geom. Appl., 27(4):255-276, 2017. Google Scholar
  18. M. B. Dillencourt, D. M. Mount, and N. S. Netanyahu. A randomized algorithm for slope selection. Int. J. Comput. Geom. Appl., 2(1):1-27, 1992. Google Scholar
  19. A. V. Fishkin. Disk graphs: A short survey. In First Internat. Workshop on Approximation and Online Algorithms, volume 2909 of Lecture Notes in Computer Science, pages 260-264, 2003. Google Scholar
  20. J. Gao and L. Zhang. Well-separated pair decomposition for the unit-disk graph metric and its applications. SIAM J. Comput., 35(1):151-169, 2005. Google Scholar
  21. M. J. Katz and M. Sharir. Efficient algorithms for optimization problems involving distances in a point set. In arXiv:2111.02052. Google Scholar
  22. M. J. Katz and M. Sharir. An expander-based approach to geometric optimization. SIAM J. Comput., 26:1384-1408, 1997. Google Scholar
  23. J. Matoušek. Randomized optimal algorithm for slope selection. Inf. Process. Lett., 39(4):183-187, 1991. Google Scholar
  24. J. Matoušek and Z. Patáková. Multilevel polynomial partitions and simplified range searching. Discrete Comput. Geom., 54:22-41, 2015. Google Scholar
  25. N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. ACM, 30(4):852-865, 1983. Google Scholar
  26. L. Roditty and M. Segal. On bounded leg shortest paths problems. Algorithmica, 59(4):583-600, 2011. Google Scholar
  27. H. Wang and J. Xue. Near-optimal algorithms for shortest paths in weighted unit-disk graphs. Discrete Comput. Geom., 64(4):1141-1166, 2020. Google Scholar
  28. H. Wang and Y. Zhao. Reverse shortest path problem for unit-disk graphs. In 17th Internat. Sympos. on Algorithms and Data Structures, pages 655-668, 2021. Google Scholar
  29. H. Wang and Y. Zhao. Reverse shortest path problem in weighted unit-disk graphs. In 16th Internat. Conf. on Algorithms and Computation, pages 135-146, 2022. Google Scholar
  30. J. Zhang and Y. Lin. Computation of the reverse shortest-path problem. J. Glob. Optim., 25(3):243-261, 2003. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail