LIPIcs.ISAAC.2022.48.pdf
- Filesize: 0.64 MB
- 16 pages
In recent years, parameterized quantum circuits have become a major tool to design quantum algorithms for optimization problems. The challenge in fully taking advantage of a given family of parameterized circuits lies in finding a good set of parameters in a non-convex landscape that can grow exponentially to the number of parameters. We introduce a new framework for optimizing parameterized quantum circuits: round SDP solutions to circuit parameters. Within this framework, we propose an algorithm that produces approximate solutions for a quantum optimization problem called Quantum Max Cut. The rounding algorithm runs in polynomial time to the number of parameters regardless of the underlying interaction graph. The resulting 0.562-approximation algorithm for generic instances of Quantum Max Cut improves on the previously known best algorithms by Anshu, Gosset, and Morenz with a ratio 0.531 and by Parekh and Thompson with a ratio 0.533.
Feedback for Dagstuhl Publishing