LIPIcs.ISAAC.2022.52.pdf
- Filesize: 0.69 MB
- 12 pages
For S ⊆ {0,1}ⁿ a Boolean function f : S → {-1,1} is a polynomial threshold function (PTF) of degree d and weight W if there is a polynomial p with integer coefficients of degree d and with sum of absolute coefficients W such that f(x) = sign p(x) for all x ∈ S. We study a representation of decision lists as PTFs over Boolean cubes {0,1}ⁿ and over Hamming balls {0,1}ⁿ_{≤ k}. As our first result, we show that for all d = O((n/(log n))^{1/3}) any decision list over {0,1}ⁿ can be represented by a PTF of degree d and weight 2^O(n/d²). This improves the result by Klivans and Servedio [Adam R. Klivans and Rocco A. Servedio, 2006] by a log² d factor in the exponent of the weight. Our bound is tight for all d = O((n/(log n))^{1/3}) due to the matching lower bound by Beigel [Richard Beigel, 1994]. For decision lists over a Hamming ball {0,1}ⁿ_{≤ k} we show that the upper bound on weight above can be drastically improved to n^O(√k) for d = Θ(√k). We also show that similar improvement is not possible for smaller degrees by proving the lower bound W = 2^Ω(n/d²) for all d = O(√k).
Feedback for Dagstuhl Publishing