Segment Visibility Counting Queries in Polygons

Authors Kevin Buchin , Bram Custers , Ivor van der Hoog, Maarten Löffler, Aleksandr Popov , Marcel Roeloffzen , Frank Staals



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2022.58.pdf
  • Filesize: 1.05 MB
  • 16 pages

Document Identifiers

Author Details

Kevin Buchin
  • Department of Computer Science, TU Dortmund, Germany
Bram Custers
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Ivor van der Hoog
  • Department of Applied Mathematics and Computer Science, DTU, Copenhagen, Denmark
Maarten Löffler
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
Aleksandr Popov
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Marcel Roeloffzen
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Frank Staals
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands

Cite As Get BibTex

Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Löffler, Aleksandr Popov, Marcel Roeloffzen, and Frank Staals. Segment Visibility Counting Queries in Polygons. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 58:1-58:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.ISAAC.2022.58

Abstract

Let P be a simple polygon with n vertices, and let A be a set of m points or line segments inside P. We develop data structures that can efficiently count the objects from A that are visible to a query point or a query segment. Our main aim is to obtain fast, O(polylog nm), query times, while using as little space as possible.
In case the query is a single point, a simple visibility-polygon-based solution achieves O(log nm) query time using O(nm²) space. In case A also contains only points, we present a smaller, O(n + m^{2+ε} log n)-space, data structure based on a hierarchical decomposition of the polygon.
Building on these results, we tackle the case where the query is a line segment and A contains only points. The main complication here is that the segment may intersect multiple regions of the polygon decomposition, and that a point may see multiple such pieces. Despite these issues, we show how to achieve O(log n log nm) query time using only O(nm^{2+ε} + n²) space. Finally, we show that we can even handle the case where the objects in A are segments with the same bounds.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Visibility
  • Data Structure
  • Polygons
  • Complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pankaj K. Agarwal and Micha Sharir. Applications of a new space-partitioning technique. Discrete & Computational Geometry, 9:11-38, 1993. URL: https://doi.org/10.1007/BF02189304.
  2. Pankaj K. Agarwal and Marc J. van Kreveld. Connected component and simple polygon intersection searching. Algorithmica, 15:626-660, 1996. URL: https://doi.org/10.1007/BF01940884.
  3. Sharareh Alipour, Mohammad Ghodsi, Alireza Zarei, and Maryam Pourreza. Visibility testing and counting. Information Processing Letters, 115(9):649-654, 2015. URL: https://doi.org/10.1016/j.ipl.2015.03.009.
  4. Boris Aronov, Leonidas J. Guibas, Marek Teichmann, and Li Zhang. Visibility queries and maintenance in simple polygons. Discrete & Computational Geometry, 27:461-483, 2002. URL: https://doi.org/10.1007/s00454-001-0089-9.
  5. Boaz Ben-Moshe, Olaf Hall-Holt, Matthew J. Katz, and Joseph S. B. Mitchell. Computing the visibility graph of points within a polygon. In Jack S. Snoeyink and Jean-Daniel Boissonnat, editors, Proceedings of the 20th Annual Symposium on Computational Geometry (SoCG 2004), pages 27-35, New York, NY, USA, 2004. ACM. URL: https://doi.org/10.1145/997817.997825.
  6. Prosenjit Bose, Anna Lubiw, and James Ian Munro. Efficient visibility queries in simple polygons. Computational Geometry: Theory & Applications, 23(3):313-335, 2002. URL: https://doi.org/10.1016/S0925-7721(01)00070-0.
  7. Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Löffler, Aleksandr Popov, Marcel Roeloffzen, and Frank Staals. Segment visibility counting queries in polygons, 2022. URL: http://arxiv.org/abs/2201.03490.
  8. Mojtaba Nouri Bygi, Shervin Daneshpajouh, Sharareh Alipour, and Mohammad Ghodsi. Weak visibility counting in simple polygons. Journal of Computational and Applied Mathematics, 288:215-222, 2015. URL: https://doi.org/10.1016/j.cam.2015.04.018.
  9. Bernard Chazelle. A theorem on polygon cutting with applications. In Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 1982), pages 339-349, Piscataway, NJ, USA, 1982. IEEE. URL: https://doi.org/10.1109/SFCS.1982.58.
  10. Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational Geometry, 6:485-524, 1991. URL: https://doi.org/10.1007/BF02574703.
  11. Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete & Computational Geometry, 9:145-158, 1993. URL: https://doi.org/10.1007/BF02189314.
  12. Bernard Chazelle and Herbert Edelsbrunner. An optimal algorithm for intersecting line segments in the plane. Journal of the ACM, 39(1):1-54, 1992. URL: https://doi.org/10.1145/147508.147511.
  13. Bernard Chazelle and Leonidas J. Guibas. Visibility and intersection problems in plane geometry. Discrete & Computational Geometry, 4:551-581, 1989. URL: https://doi.org/10.1007/BF02187747.
  14. Bernard Chazelle, Micha Sharir, and Emo Welzl. Quasi-optimal upper bounds for simplex range searching and new zone theorems. Algorithmica, 8:407-429, 1992. URL: https://doi.org/10.1007/BF01758854.
  15. Danny Ziyi Chen and Haitao Wang. Weak visibility queries of line segments in simple polygons. Computational Geometry: Theory & Applications, 48(6):443-452, 2015. URL: https://doi.org/10.1016/j.comgeo.2015.02.001.
  16. Kenneth L. Clarkson. New applications of random sampling in computational geometry. Discrete & Computational Geometry, 2:195-222, 1987. URL: https://doi.org/10.1007/BF02187879.
  17. Patrick Eades, Ivor van der Hoog, Maarten Löffler, and Frank Staals. Trajectory visibility. In Susanne Albers, editor, Proceedings of the 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020), number 162 in Leibniz International Proceedings in Informatics (LIPIcs), pages 23:1-23:22, Dagstuhl, Germany, 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.SWAT.2020.23.
  18. Hossam El Gindy and David Avis. A linear algorithm for computing the visibility polygon from a point. Journal of Algorithms, 2(2):186-197, 1981. URL: https://doi.org/10.1016/0196-6774(81)90019-5.
  19. Subir Kumar Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, Cambridge, UK, 2007. URL: https://doi.org/10.1017/CBO9780511543340.
  20. Jacob E. Goodman, Joseph O'Rourke, and Csaba D. Tóth, editors. Handbook of Discrete and Computational Geometry. Chapman and Hall/CRC, New York, NY, USA, 3rd edition, 2017. URL: https://doi.org/10.1201/9781315119601.
  21. Joachim Gudmundsson and Pat Morin. Planar visibility: Testing and counting. In David G. Kirkpatrick and Joseph S. B. Mitchell, editors, Proceedings of the 26th Annual Symposium on Computational Geometry (SoCG 2010), pages 77-86, New York, NY, USA, 2010. ACM. URL: https://doi.org/10.1145/1810959.1810973.
  22. Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple polygon. Journal of Computer and System Sciences, 39(2):126-152, 1989. URL: https://doi.org/10.1016/0022-0000(89)90041-X.
  23. Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E. Tarjan. Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209-233, 1987. URL: https://doi.org/10.1007/BF01840360.
  24. Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Further results on generalized intersection searching problems: Counting, reporting, and dynamization. Journal of Algorithms, 19(2):282-317, 1995. URL: https://doi.org/10.1006/jagm.1995.1038.
  25. John Hershberger. A new data structure for shortest path queries in a simple polygon. Information Processing Letters, 38(5):231-235, 1991. URL: https://doi.org/10.1016/0020-0190(91)90064-O.
  26. John Hershberger and Subhash Suri. A pedestrian approach to ray shooting: Shoot a ray, take a walk. Journal of Algorithms, 18(3):403-431, 1995. URL: https://doi.org/10.1006/jagm.1995.1017.
  27. Barry Joe and Richard B. Simpson. Corrections to Lee’s visibility polygon algorithm. BIT Numerical Mathematics, 27:458-473, 1987. URL: https://doi.org/10.1007/BF01937271.
  28. David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing, 12(1):28-35, 1983. URL: https://doi.org/10.1137/0212002.
  29. Der-Tsai Lee. Visibility of a simple polygon. Computer Vision, Graphics, and Image Processing, 22(2):207-221, 1983. URL: https://doi.org/10.1016/0734-189X(83)90065-8.
  30. Joseph O'Rourke. Art Gallery Theorems and Algorithms, volume 3 of The International Series of Monographs on Computer Science. Oxford University Press, Oxford, UK, 1987. URL: http://www.science.smith.edu/~jorourke/books/ArtGalleryTheorems/art.html.
  31. Mark H. Overmars and Emo Welzl. New methods for computing visibility graphs. In Herbert Edelsbrunner, editor, Proceedings of the 4th Annual Symposium on Computational Geometry (SoCG 1988), pages 164-171, New York, NY, USA, 1988. ACM. URL: https://doi.org/10.1145/73393.73410.
  32. Subhash Suri and Joseph O'Rourke. Worst-case optimal algorithms for constructing visibility polygons with holes. In Alok Aggarwal, editor, Proceedings of the 2nd Annual Symposium on Computational Geometry (SoCG 1986), pages 14-23, New York, NY, USA, 1986. ACM. URL: https://doi.org/10.1145/10515.10517.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail