LIPIcs.ISAAC.2022.64.pdf
- Filesize: 1.44 MB
- 18 pages
We consider subsequences with gap constraints, i. e., length-k subsequences p that can be embedded into a string w such that the induced gaps (i. e., the factors of w between the positions to which p is mapped to) satisfy given gap constraints gc = (C_1, C_2, …, C_{k-1}); we call p a gc-subsequence of w. In the case where the gap constraints gc are defined by lower and upper length bounds C_i = (L^-_i, L^+_i) ∈ ℕ² and/or regular languages C_i ∈ REG, we prove tight (conditional on the orthogonal vectors (OV) hypothesis) complexity bounds for checking whether a given p is a gc-subsequence of a string w. We also consider the whole set of all gc-subsequences of a string, and investigate the complexity of the universality, equivalence and containment problems for these sets of gc-subsequences.
Feedback for Dagstuhl Publishing