LIPIcs.IPEC.2022.3.pdf
- Filesize: 0.94 MB
- 19 pages
For nonempty σ, ρ ⊆ ℕ, a vertex set S in a graph G is a (σ, ρ)-dominating set if for all v ∈ S, |N(v) ∩ S| ∈ σ, and for all v ∈ V(G) ⧵ S, |N(v) ∩ S| ∈ ρ. The Min/Max (σ,ρ)-Dominating Set problems ask, given a graph G and an integer k, whether G contains a (σ, ρ)-dominating set of size at most k and at least k, respectively. This framework captures many well-studied graph problems related to independence and domination. Bui-Xuan, Telle, and Vatshelle [TCS 2013] showed that for finite or co-finite σ and ρ, the Min/Max (σ,ρ)-Dominating Set problems are solvable in XP time parameterized by the mim-width of a given branch decomposition of the input graph. In this work we consider the parameterized complexity of these problems and obtain the following: For minimization problems, we complete several scattered W[1]-hardness results in the literature to a full dichotomoy into polynomial-time solvable and W[1]-hard cases, and for maximization problems we obtain the same result under the additional restriction that σ and ρ are finite sets. All W[1]-hard cases hold assuming that a linear branch decomposition of bounded mim-width is given, and with the solution size being an additional part of the parameter. Furthermore, for all W[1]-hard cases we also rule out f(w)n^o(w/log w)-time algorithms assuming the Exponential Time Hypothesis, where f is any computable function, n is the number of vertices and w the mim-width of the given linear branch decomposition of the input graph.
Feedback for Dagstuhl Publishing