Towards Exact Structural Thresholds for Parameterized Complexity

Authors Falko Hegerfeld , Stefan Kratsch



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2022.17.pdf
  • Filesize: 0.86 MB
  • 20 pages

Document Identifiers

Author Details

Falko Hegerfeld
  • Humboldt-Universität zu Berlin, Germany
Stefan Kratsch
  • Humboldt-Universität zu Berlin, Germany

Cite As Get BibTex

Falko Hegerfeld and Stefan Kratsch. Towards Exact Structural Thresholds for Parameterized Complexity. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 17:1-17:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.IPEC.2022.17

Abstract

Parameterized complexity seeks to optimally use input structure to obtain faster algorithms for NP-hard problems. This has been most successful for graphs of low treewidth, i.e., graphs decomposable by small separators: Many problems admit fast algorithms relative to treewidth and many of them are optimal under the Strong Exponential-Time Hypothesis (SETH). Fewer such results are known for more general structure such as low clique-width (decomposition by large and dense but structured separators) and more restrictive structure such as low deletion distance to some sparse graph class.
Despite these successes, such results remain "islands" within the realm of possible structure. Rather than adding more islands, we seek to determine the transitions between them, that is, we aim for structural thresholds where the complexity increases as input structure becomes more general. Going from deletion distance to treewidth, is a single deletion set to a graph with simple components enough to yield the same lower bound as for treewidth or does it take many disjoint separators? Going from treewidth to clique-width, how much more density entails the same complexity as clique-width? Conversely, what is the most restrictive structure that yields the same lower bound?
For treewidth, we obtain both refined and new lower bounds that apply already to graphs with a single separator X such that G-X has treewidth at most r = 𝒪(1), while G has treewidth |X|+𝒪(1). We rule out algorithms running in time 𝒪^*((r+1-ε)^k) for Deletion to r-Colorable parameterized by k = |X|; this implies the same lower bound relative to treedepth and (hence) also to treewidth. It specializes to 𝒪^*((3-ε)^k) for Odd Cycle Transversal where tw(G-X) ≤ r = 2 is best possible. For clique-width, an extended version of the above reduction rules out time 𝒪^*((4-ε)^k), where X is allowed to be a possibly large separator consisting of k (true) twinclasses, while the treewidth of G - X remains r; this is proved also for the more general Deletion to r-Colorable and it implies the same lower bound relative to clique-width. Further results complement what is known for Vertex Cover, Dominating Set and Maximum Cut. All lower bounds are matched by existing and newly designed algorithms.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • Mathematics of computing → Graph algorithms
Keywords
  • Parameterized complexity
  • lower bound
  • vertex cover
  • odd cycle transversal
  • SETH
  • modulator
  • treedepth
  • cliquewidth

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci., 209(1-2):1-45, 1998. URL: https://doi.org/10.1016/S0304-3975(97)00228-4.
  2. Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decompositions. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pages 8:1-8:23. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.IPEC.2016.8.
  3. Jannis Bulian and Anuj Dawar. Graph isomorphism parameterized by elimination distance to bounded degree. Algorithmica, 75(2):363-382, 2016. URL: https://doi.org/10.1007/s00453-015-0045-3.
  4. Jannis Bulian and Anuj Dawar. Fixed-parameter tractable distances to sparse graph classes. Algorithmica, 79(1):139-158, 2017. URL: https://doi.org/10.1007/s00453-016-0235-7.
  5. Yijia Chen and Jörg Flum. Fo-definability of shrub-depth. In Maribel Fernández and Anca Muscholl, editors, 28th EACSL Annual Conference on Computer Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain, volume 152 of LIPIcs, pages 15:1-15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.CSL.2020.15.
  6. Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discret. Appl. Math., 101(1-3):77-114, 2000. URL: https://doi.org/10.1016/S0166-218X(99)00184-5.
  7. Radu Curticapean, Nathan Lindzey, and Jesper Nederlof. A tight lower bound for counting hamiltonian cycles via matrix rank. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1080-1099. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.70.
  8. Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650-1669. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch113.
  9. Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as CNF-SAT. ACM Trans. Algorithms, 12(3):41:1-41:24, 2016. URL: https://doi.org/10.1145/2925416.
  10. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  11. Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of perfect matchings. J. ACM, 65(3):12:1-12:46, 2018. URL: https://doi.org/10.1145/3148227.
  12. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 150-159. IEEE Computer Society, 2011. URL: https://doi.org/10.1109/FOCS.2011.23.
  13. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential time. ACM Trans. Algorithms, 18(2):17:1-17:31, 2022. URL: https://doi.org/10.1145/3506707.
  14. Matt DeVos, O-joung Kwon, and Sang-il Oum. Branch-depth: Generalizing tree-depth of graphs. Eur. J. Comb., 90:103186, 2020. URL: https://doi.org/10.1016/j.ejc.2020.103186.
  15. Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. New algorithms for mixed dominating set. Discret. Math. Theor. Comput. Sci., 23(1), 2021. URL: http://dmtcs.episciences.org/7407.
  16. Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. Upper dominating set: Tight algorithms for pathwidth and sub-exponential approximation. Theor. Comput. Sci., 923:271-291, 2022. URL: https://doi.org/10.1016/j.tcs.2022.05.013.
  17. László Egri, Dániel Marx, and Pawel Rzazewski. Finding list homomorphisms from bounded-treewidth graphs to reflexive graphs: a complete complexity characterization. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 27:1-27:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.STACS.2018.27.
  18. Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what matters: A hybrid approach to dynamic programming with treewidth. J. Comput. Syst. Sci., 121:57-75, 2021. URL: https://doi.org/10.1016/j.jcss.2021.04.005.
  19. Eduard Eiben, Robert Ganian, and Stefan Szeider. Meta-kernelization using well-structured modulators. Discret. Appl. Math., 248:153-167, 2018. URL: https://doi.org/10.1016/j.dam.2017.09.018.
  20. Eduard Eiben, Robert Ganian, and Stefan Szeider. Solving problems on graphs of high rank-width. Algorithmica, 80(2):742-771, 2018. URL: https://doi.org/10.1007/s00453-017-0290-8.
  21. Jacob Focke, Dániel Marx, and Pawel Rzazewski. Counting list homomorphisms from graphs of bounded treewidth: tight complexity bounds. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9-12, 2022, pages 431-458. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.22.
  22. Jakub Gajarský and Stephan Kreutzer. Computing shrub-depth decompositions. In Christophe Paul and Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 56:1-56:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.56.
  23. Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for modular-width. In Gregory Z. Gutin and Stefan Szeider, editors, Parameterized and Exact Computation - 8th International Symposium, IPEC 2013, Sophia Antipolis, France, September 4-6, 2013, Revised Selected Papers, volume 8246 of Lecture Notes in Computer Science, pages 163-176. Springer, 2013. URL: https://doi.org/10.1007/978-3-319-03898-8_15.
  24. Robert Ganian, Thekla Hamm, Viktoriia Korchemna, Karolina Okrasa, and Kirill Simonov. The fine-grained complexity of graph homomorphism parameterized by clique-width. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 66:1-66:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.66.
  25. Robert Ganian, Petr Hlinený, Jaroslav Nesetril, Jan Obdrzálek, and Patrice Ossona de Mendez. Shrub-depth: Capturing height of dense graphs. Log. Methods Comput. Sci., 15(1), 2019. URL: https://doi.org/10.23638/LMCS-15(1:7)2019.
  26. Carla Groenland, Isja Mannens, Jesper Nederlof, and Krisztina Szilágyi. Tight bounds for counting colorings and connected edge sets parameterized by cutwidth. In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages 36:1-36:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.STACS.2022.36.
  27. Falko Hegerfeld and Stefan Kratsch. Towards exact structural thresholds for parameterized complexity. CoRR, abs/2107.06111, 2021. URL: http://arxiv.org/abs/2107.06111.
  28. Petr Hlinený, O-joung Kwon, Jan Obdrzálek, and Sebastian Ordyniak. Tree-depth and vertex-minors. Eur. J. Comb., 56:46-56, 2016. URL: https://doi.org/10.1016/j.ejc.2016.03.001.
  29. Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. Elimination distances, blocking sets, and kernels for vertex cover. In Christophe Paul and Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 36:1-36:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.36.
  30. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727.
  31. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. URL: https://doi.org/10.1006/jcss.2001.1774.
  32. Yoichi Iwata and Yuichi Yoshida. On the equivalence among problems of bounded width. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages 754-765. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-48350-3_63.
  33. Ashwin Jacob, Fahad Panolan, Venkatesh Raman, and Vibha Sahlot. Structural parameterizations with modulator oblivion. Algorithmica, 84(8):2335-2357, 2022. URL: https://doi.org/10.1007/s00453-022-00971-7.
  34. Hugo Jacob, Thomas Bellitto, Oscar Defrain, and Marcin Pilipczuk. Close relatives (of feedback vertex set), revisited. In Petr A. Golovach and Meirav Zehavi, editors, 16th International Symposium on Parameterized and Exact Computation, IPEC 2021, September 8-10, 2021, Lisbon, Portugal, volume 214 of LIPIcs, pages 21:1-21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.IPEC.2021.21.
  35. Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of graph coloring problems. In Dimitris Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos, editors, Algorithms and Complexity - 10th International Conference, CIAC 2017, Athens, Greece, May 24-26, 2017, Proceedings, volume 10236 of Lecture Notes in Computer Science, pages 345-356, 2017. URL: https://doi.org/10.1007/978-3-319-57586-5_29.
  36. Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Wlodarczyk. Vertex deletion parameterized by elimination distance and even less. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1757-1769. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451068.
  37. Bart M. P. Jansen and Jesper Nederlof. Computing the chromatic number using graph decompositions via matrix rank. Theor. Comput. Sci., 795:520-539, 2019. URL: https://doi.org/10.1016/j.tcs.2019.08.006.
  38. Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters, tight bounds, and approximation for (k, r)-center. Discrete Applied Mathematics, 264:90-117, 2019. URL: https://doi.org/10.1016/j.dam.2018.11.002.
  39. Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structurally parameterized d-scattered set. Discret. Appl. Math., 308:168-186, 2022. URL: https://doi.org/10.1016/j.dam.2020.03.052.
  40. O-joung Kwon, Rose McCarty, Sang-il Oum, and Paul Wollan. Obstructions for bounded shrub-depth and rank-depth. J. Comb. Theory, Ser. B, 149:76-91, 2021. URL: https://doi.org/10.1016/j.jctb.2021.01.005.
  41. Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica, 64(1):19-37, 2012. URL: https://doi.org/10.1007/s00453-011-9554-x.
  42. Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math., 34(3):1538-1558, 2020. URL: https://doi.org/10.1137/19M1280326.
  43. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1-13:30, 2018. URL: https://doi.org/10.1145/3170442.
  44. Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Algorithms, 11(2):15:1-15:31, 2014. URL: https://doi.org/10.1145/2566616.
  45. Dániel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and gaps: Tight complexity results of general factor problems parameterized by treewidth and cutwidth. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 95:1-95:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.95.
  46. Dániel Marx, Govind S. Sankar, and Philipp Schepper. Anti-factor is FPT parameterized by treewidth and list size (but counting is hard). CoRR, abs/2110.09369, 2022. To appear at IPEC 2022. URL: http://arxiv.org/abs/2110.09369.
  47. Stefan Mengel. Parameterized compilation lower bounds for restricted CNF-formulas. In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer Science, pages 3-12. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-40970-2_1.
  48. Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-27875-4.
  49. Karolina Okrasa, Marta Piecyk, and Pawel Rzazewski. Full complexity classification of the list homomorphism problem for bounded-treewidth graphs. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 74:1-74:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ESA.2020.74.
  50. Karolina Okrasa and Pawel Rzazewski. Fine-grained complexity of the graph homomorphism problem for bounded-treewidth graphs. SIAM J. Comput., 50(2):487-508, 2021. URL: https://doi.org/10.1137/20M1320146.
  51. Daniël Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model counting for CNF formulas of bounded modular treewidth. Algorithmica, 76(1):168-194, 2016. URL: https://doi.org/10.1007/s00453-015-0030-x.
  52. Marta Piecyk and Pawel Rzazewski. Fine-grained complexity of the list homomorphism problem: Feedback vertex set and cutwidth. In Markus Bläser and Benjamin Monmege, editors, 38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages 56:1-56:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.STACS.2021.56.
  53. Bas A. M. van Geffen, Bart M. P. Jansen, Arnoud A. W. M. de Kroon, and Rolf Morel. Lower bounds for dynamic programming on planar graphs of bounded cutwidth. J. Graph Algorithms Appl., 24(3):461-482, 2020. URL: https://doi.org/10.7155/jgaa.00542.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail