LIPIcs.IPEC.2022.25.pdf
- Filesize: 1.1 MB
- 14 pages
Given an undirected graph, the task in Cluster Editing is to insert and delete a minimum number of edges to obtain a cluster graph, that is, a disjoint union of cliques. In the weighted variant each vertex pair comes with a weight and the edge modifications have to be of minimum overall weight. In this work, we provide the first polynomial-time algorithm to apply the following data reduction rule of Böcker et al. [Algorithmica, 2011] for Weighted Cluster Editing: For a graph G = (V,E), merge a vertex set S ⊆ V into a single vertex if the minimum cut of G[S] is at least the combined cost of inserting all missing edges within G[S] plus the cost of cutting all edges from S to the rest of the graph. Complementing our theoretical findings, we experimentally demonstrate the effectiveness of the data reduction rule, shrinking real-world test instances from the PACE Challenge 2021 by around 24% while previous heuristic implementations of the data reduction rule only achieve 8%.
Feedback for Dagstuhl Publishing