The True Colors of Memory: A Tour of Chromatic-Memory Strategies in Zero-Sum Games on Graphs (Invited Talk)

Authors Patricia Bouyer , Mickael Randour , Pierre Vandenhove



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2022.3.pdf
  • Filesize: 0.74 MB
  • 18 pages

Document Identifiers

Author Details

Patricia Bouyer
  • Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France
Mickael Randour
  • F.R.S.-FNRS & UMONS - Université de Mons, Belgium
Pierre Vandenhove
  • F.R.S.-FNRS & UMONS - Université de Mons, Belgium
  • Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France

Acknowledgements

Most of the results presented here [Bouyer et al., 2022; Patricia Bouyer et al., 2021; Bouyer et al., 2022; Patricia Bouyer et al., 2022] are related to the F.R.S.-FNRS project FrontieRS, led by the authors. Some of these were obtained in collaboration with Antonio Casares, Stéphane Le Roux, and Youssouf Oualhadj. We express our utmost gratitude to our delightful co-authors.

Cite AsGet BibTex

Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. The True Colors of Memory: A Tour of Chromatic-Memory Strategies in Zero-Sum Games on Graphs (Invited Talk). In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 3:1-3:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.3

Abstract

Two-player turn-based zero-sum games on (finite or infinite) graphs are a central framework in theoretical computer science - notably as a tool for controller synthesis, but also due to their connection with logic and automata theory. A crucial challenge in the field is to understand how complex strategies need to be to play optimally, given a type of game and a winning objective. In this invited contribution, we give a tour of recent advances aiming to characterize games where finite-memory strategies suffice (i.e., using a limited amount of information about the past). We mostly focus on so-called chromatic memory, which is limited to using colors - the basic building blocks of objectives - seen along a play to update itself. Chromatic memory has the advantage of being usable in different game graphs, and the corresponding class of strategies turns out to be of great interest to both the practical and the theoretical sides.

Subject Classification

ACM Subject Classification
  • Theory of computation → Formal languages and automata theory
Keywords
  • two-player games on graphs
  • finite-memory strategies
  • chromatic memory
  • parity automata
  • ω-regularity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Dana Angluin and Dana Fisman. Regular ω-languages with an informative right congruence. Inf. Comput., 278:104598, 2021. URL: https://doi.org/10.1016/j.ic.2020.104598.
  2. Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph games and reactive synthesis. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages 921-962. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-10575-8_27.
  3. Patricia Bouyer, Antonio Casares, Mickael Randour, and Pierre Vandenhove. Half-positional objectives recognized by deterministic Büchi automata. In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors, 33rd International Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022, Warsaw, Poland, volume 243 of LIPIcs, pages 20:1-20:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2022.20.
  4. Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove. Games where you can play optimally with arena-independent finite memory. Log. Methods Comput. Sci., 18(1), 2022. URL: https://doi.org/10.46298/lmcs-18(1:11)2022.
  5. Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim G. Larsen, and Simon Laursen. Average-energy games. Acta Inf., 55(2):91-127, 2018. URL: https://doi.org/10.1007/s00236-016-0274-1.
  6. Patricia Bouyer, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove. Arena-independent finite-memory determinacy in stochastic games. In Serge Haddad and Daniele Varacca, editors, 32nd International Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 26:1-26:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2021.26.
  7. Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. Characterizing omega-regularity through finite-memory determinacy of games on infinite graphs. In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022), volume 219 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1-16:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.STACS.2022.16.
  8. Romain Brenguier, Lorenzo Clemente, Paul Hunter, Guillermo A. Pérez, Mickael Randour, Jean-François Raskin, Ocan Sankur, and Mathieu Sassolas. Non-zero sum games for reactive synthesis. In Adrian-Horia Dediu, Jan Janousek, Carlos Martín-Vide, and Bianca Truthe, editors, Language and Automata Theory and Applications - 10th International Conference, LATA 2016, Prague, Czech Republic, March 14-18, 2016, Proceedings, volume 9618 of Lecture Notes in Computer Science, pages 3-23. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-30000-9_1.
  9. Véronique Bruyère, Quentin Hautem, and Mickael Randour. Window parity games: an alternative approach toward parity games with time bounds. In Domenico Cantone and Giorgio Delzanno, editors, Proceedings of the Seventh International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 September 2016, volume 226 of EPTCS, pages 135-148, 2016. URL: https://doi.org/10.4204/EPTCS.226.10.
  10. Véronique Bruyère, Quentin Hautem, Mickael Randour, and Jean-François Raskin. Energy mean-payoff games. In Wan Fokkink and Rob van Glabbeek, editors, 30th International Conference on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands, volume 140 of LIPIcs, pages 21:1-21:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2019.21.
  11. Antonio Casares. On the minimisation of transition-based Rabin automata and the chromatic memory requirements of Muller conditions. In Florin Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume 216 of LIPIcs, pages 12:1-12:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.CSL.2022.12.
  12. Antonio Casares, Thomas Colcombet, and Nathanaël Fijalkow. Optimal transformations of games and automata using Muller conditions. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 123:1-123:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.123.
  13. Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. On the size of good-for-games Rabin automata and its link with the memory in Muller games. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229, pages 117:1-117:20, 2022. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.117.
  14. Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy synthesis for multi-dimensional quantitative objectives. Acta Inf., 51(3-4):129-163, 2014. URL: https://doi.org/10.1007/s00236-013-0182-6.
  15. Thomas Colcombet, Nathanaël Fijalkow, Pawel Gawrychowski, and Pierre Ohlmann. The theory of universal graphs for infinite duration games. CoRR, abs/2104.05262, 2021. URL: http://arxiv.org/abs/2104.05262.
  16. Thomas Colcombet and Damian Niwiński. On the positional determinacy of edge-labeled games. Theor. Comput. Sci., 352(1-3):190-196, 2006. URL: https://doi.org/10.1016/j.tcs.2005.10.046.
  17. Florent Delgrange, Joost-Pieter Katoen, Tim Quatmann, and Mickael Randour. Simple strategies in multi-objective MDPs. In Armin Biere and David Parker, editors, Tools and Algorithms for the Construction and Analysis of Systems - 26th International Conference, TACAS 2020, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part I, volume 12078 of Lecture Notes in Computer Science, pages 346-364. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-45190-5_19.
  18. Stefan Dziembowski, Marcin Jurdzinski, and Igor Walukiewicz. How much memory is needed to win infinite games? In Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, June 29 - July 2, 1997, pages 99-110. IEEE Computer Society, 1997. URL: https://doi.org/10.1109/LICS.1997.614939.
  19. Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games. Int. Journal of Game Theory, 8(2):109-113, 1979. URL: https://doi.org/10.1007/BF01768705.
  20. E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of programs. In FOCS, pages 328-337. IEEE Computer Society, 1988. URL: https://doi.org/10.1109/SFCS.1988.21949.
  21. E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy (extended abstract). In 32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages 368-377. IEEE Computer Society, 1991. URL: https://doi.org/10.1109/SFCS.1991.185392.
  22. Nathanaël Fijalkow and Florian Horn. The surprizing complexity of reachability games. CoRR, abs/1010.2420, 2010. URL: https://doi.org/10.48550/arXiv.1010.2420.
  23. Hugo Gimbert and Wieslaw Zielonka. When can you play positionally? In Jirí Fiala, Václav Koubek, and Jan Kratochvíl, editors, Mathematical Foundations of Computer Science 2004, 29th International Symposium, MFCS 2004, Prague, Czech Republic, August 22-27, 2004, Proceedings, volume 3153 of Lecture Notes in Computer Science, pages 686-697. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-28629-5_53.
  24. Hugo Gimbert and Wieslaw Zielonka. Games where you can play optimally without any memory. In Martín Abadi and Luca de Alfaro, editors, CONCUR 2005 - Concurrency Theory, 16th International Conference, CONCUR 2005, San Francisco, CA, USA, August 23-26, 2005, Proceedings, volume 3653 of Lecture Notes in Computer Science, pages 428-442. Springer, 2005. URL: https://doi.org/10.1007/11539452_33.
  25. Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002. URL: https://doi.org/10.1007/3-540-36387-4.
  26. Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors, Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages 60-65. ACM, 1982. URL: https://doi.org/10.1145/800070.802177.
  27. Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik Wojtczak. Good-for-MDPs automata for probabilistic analysis and reinforcement learning. In Armin Biere and David Parker, editors, Tools and Algorithms for the Construction and Analysis of Systems - 26th International Conference, TACAS 2020, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part I, volume 12078 of Lecture Notes in Computer Science, pages 306-323. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-45190-5_17.
  28. Florian Horn. Random fruits on the Zielonka tree. In Susanne Albers and Jean-Yves Marion, editors, 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, volume 3 of LIPIcs, pages 541-552. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2009. URL: https://doi.org/10.4230/LIPIcs.STACS.2009.1848.
  29. Nils Klarlund. Progress measures, immediate determinacy, and a subset construction for tree automata. Ann. Pure Appl. Log., 69(2-3):243-268, 1994. URL: https://doi.org/10.1016/0168-0072(94)90086-8.
  30. Eryk Kopczyński. Half-positional determinacy of infinite games. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II, volume 4052 of Lecture Notes in Computer Science, pages 336-347. Springer, 2006. URL: https://doi.org/10.1007/11787006_29.
  31. Eryk Kopczyński. Half-positional Determinacy of Infinite Games. PhD thesis, Warsaw University, 2008. Google Scholar
  32. Alexander Kozachinskiy. Infinite separation between general and chromatic memory. CoRR, abs/2208.02691, 2022. URL: https://doi.org/10.48550/arXiv.2208.02691.
  33. Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending finite-memory determinacy by Boolean combination of winning conditions. In Sumit Ganguly and Paritosh K. Pandya, editors, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, volume 122 of LIPIcs, pages 38:1-38:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38.
  34. James C. A. Main and Mickael Randour. Different strokes in randomised strategies: Revisiting Kuhn’s theorem under finite-memory assumptions. In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors, 33rd International Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022, Warsaw, Poland, volume 243 of LIPIcs, pages 22:1-22:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2022.22.
  35. Oded Maler and Ludwig Staiger. On syntactic congruences for omega-languages. Theor. Comput. Sci., 183(1):93-112, 1997. URL: https://doi.org/10.1016/S0304-3975(96)00312-X.
  36. Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363-371, 1975. Google Scholar
  37. Robert McNaughton. Infinite games played on finite graphs. Ann. Pure Appl. Logic, 65(2):149-184, 1993. URL: https://doi.org/10.1016/0168-0072(93)90036-D.
  38. A. Nerode. Linear automaton transformations. Proceedings of the American Mathematical Society, 9(4):541-544, 1958. URL: https://doi.org/10.2307/2033204.
  39. Pierre Ohlmann. Characterizing positionality in games of infinite duration over infinite graphs. In Christel Baier and Dana Fisman, editors, LICS '22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 22:1-22:12. ACM, 2022. URL: https://doi.org/10.1145/3531130.3532418.
  40. Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics. Wiley, 1994. URL: https://doi.org/10.1002/9780470316887.
  41. Mickael Randour. Automated synthesis of reliable and efficient systems through game theory: A case study. In Proc. of ECCS 2012, Springer Proceedings in Complexity XVII, pages 731-738. Springer, 2013. URL: https://doi.org/10.1007/978-3-319-00395-5_90.
  42. Lloyd S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):1095-1100, 1953. URL: https://doi.org/10.1073/pnas.39.10.1095.
  43. Ludwig Staiger. Finite-state omega-languages. J. Comput. Syst. Sci., 27(3):434-448, 1983. URL: https://doi.org/10.1016/0022-0000(83)90051-X.
  44. Klaus Wagner. On ω-regular sets. Information and control, 43(2):123-177, 1979. Google Scholar
  45. Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci., 200(1-2):135-183, 1998. URL: https://doi.org/10.1016/S0304-3975(98)00009-7.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail