LIPIcs.FSTTCS.2022.25.pdf
- Filesize: 0.63 MB
- 12 pages
A tournament is an orientation of a complete graph. We say that a vertex x in a tournament T controls another vertex y if there exists a directed path of length at most two from x to y. A vertex is called a king if it controls every vertex of the tournament. It is well known that every tournament has a king. We follow Shen, Sheng, and Wu [Jian Shen et al., 2003] in investigating the query complexity of finding a king, that is, the number of arcs in T one has to know in order to surely identify at least one vertex as a king. The aforementioned authors showed that one always has to query at least Ω(n^{4/3}) arcs and provided a strategy that queries at most O(n^{3/2}). While this upper bound has not yet been improved for the original problem, [Biswas et al., 2017] proved that with O(n^{4/3}) queries one can identify a semi-king, meaning a vertex which controls at least half of all vertices. Our contribution is a novel strategy which improves upon the number of controlled vertices: using O(n^{4/3} polylog n) queries, we can identify a (1/2+2/17)-king. To achieve this goal we use a novel structural result for tournaments.
Feedback for Dagstuhl Publishing