Frobenius Structures in Star-Autonomous Categories

Authors Cédric de Lacroix, Luigi Santocanale



PDF
Thumbnail PDF

File

LIPIcs.CSL.2023.18.pdf
  • Filesize: 1.27 MB
  • 20 pages

Document Identifiers

Author Details

Cédric de Lacroix
  • LIS, CNRS UMR 7020, Aix-Marseille Université, Marseille, France
Luigi Santocanale
  • LIS, CNRS UMR 7020, Aix-Marseille Université, Marseille, France

Cite As Get BibTex

Cédric de Lacroix and Luigi Santocanale. Frobenius Structures in Star-Autonomous Categories. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 252, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.CSL.2023.18

Abstract

It is known that the quantale of sup-preserving maps from a complete lattice to itself is a Frobenius quantale if and only if the lattice is completely distributive. Since completely distributive lattices are the nuclear objects in the autonomous category of complete lattices and sup-preserving maps, we study the above statement in a categorical setting. We introduce the notion of Frobenius structure in an arbitrary autonomous category, generalizing that of Frobenius quantale. We prove that the monoid of endomorphisms of a nuclear object has a Frobenius structure. If the environment category is star-autonomous and has epi-mono factorizations, a variant of this theorem allows to develop an abstract phase semantics and to generalise the previous statement. Conversely, we argue that, in a star-autonomous category where the monoidal unit is a dualizing object, if the monoid of endomorphisms of an object has a Frobenius structure and the monoidal unit embeds into this object as a retract, then the object is nuclear.

Subject Classification

ACM Subject Classification
  • Theory of computation → Linear logic
  • Theory of computation → Constructive mathematics
  • Theory of computation → Proof theory
Keywords
  • Quantale
  • Frobenius quantale
  • Girard quantale
  • associative algebra
  • star-autonomous category
  • nuclear object
  • adjoint

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Samson Abramsky, Richard Blute, and Prakash Panangaden. Nuclear and trace ideals in tensored ^*-categories. J. Pure Appl. Algebra, 143(1-3):3-47, 1999. URL: https://doi.org/10.1016/S0022-4049(98)00106-6.
  2. Samson Abramsky and Chris Heunen. H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics. In Mathematical foundations of information flow, volume 71 of Proc. Sympos. Appl. Math., pages 1-24. Amer. Math. Soc., Providence, RI, 2012. URL: https://doi.org/10.1090/psapm/071/599.
  3. Samson Abramsky and Steven Vickers. Quantales, observational logic and process semantics. Math. Struct. Comput. Sci., 3(2):161-227, 1993. URL: https://doi.org/10.1017/S0960129500000189.
  4. Haroun Amira, Bob Coecke, and Isar Stubbe. How quantales emerge by introducing induction within the operational approach. Phys. Acta, 71:554-572, 1998. Google Scholar
  5. Alvaro Arias and Jeff D. Farmer. On the structure of tensor products of l_p-spaces. Pacific J. Math., 175(1):13-37, 1996. URL: http://projecteuclid.org/euclid.pjm/1102364179.
  6. Michael Barr. ∗-autonomous categories, volume 752 of Lecture Notes in Mathematics. Springer, Berlin, 1979. URL: https://doi.org/10.1007/BFb0064582.
  7. R. F. Blute, J. R. B. Cockett, and R. A. G. Seely. Feedback for linearly distributive categories: Traces and fixpoints. J. Pure Appl. Algebra, 154(1-3):27-69, 2000. URL: https://doi.org/10.1016/S0022-4049(99)00180-2.
  8. Kenta Cho, Bart Jacobs, Bas Westerbaan, and Abraham Westerbaan. An introduction to effectus theory. CoRR, abs/1512.05813, 2015. URL: http://arxiv.org/abs/1512.05813.
  9. J. R. B. Cockett, M. Hasegawa, and R. A. G. Seely. Coherence of the double involution on ∗-autonomous categories. Theory Appl. Categ., 17:No. 2, 17-29, 2006. Google Scholar
  10. J. R. B. Cockett, J. Koslowski, and R. A. G. Seely. Introduction to linear bicategories. Math. Struct. Comput. Sci., 10(2):165-203, 2000. URL: https://doi.org/10.1017/S0960129520003047.
  11. J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories. Journal of Pure and Applied Algebra, 114(2):133-173, 1997. Google Scholar
  12. Robin Cockett, Cole Comfort, and Priyaa V. Srinivasan. Dagger linear logic for categorical quantum mechanics. Log. Methods Comput. Sci., 17(4):73, 2021. Id/No 8. URL: https://lmcs.episciences.org/8716.
  13. Cédric de Lacroix and Luigi Santocanale. Unitless Frobenius quantales. Preprint, available at https://arxiv.org/pdf/2205.04111.pdf, May 2022.
  14. J. M. Egger and David Kruml. Girard Couples of Quantales. Applied Categorical Structures, 18(2):123-133, April 2010. URL: https://doi.org/10.1007/s10485-008-9138-3.
  15. J.M. Egger. The Frobenius relations meet linear distributivity. Theory and Applications of Categories [electronic only], 24:25-38, 2010. URL: http://eudml.org/doc/223263.
  16. Patrik Eklund, Javier Gutiérrez Garcia, Ulrich Höhle, and Jari Kortelainen. Semigroups in complete lattices, volume 54 of Developments in Mathematics. Springer, Cham, 2018. URL: https://doi.org/10.1007/978-3-319-78948-4.
  17. Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono. Residuated Lattices: An Algebraic Glimpse at Substructural Logics, volume 151 of Studies in Logic and the Foundations of Mathematics. Elsevier, 2007. URL: https://doi.org/10.1016/S0049-237X(07)80005-X.
  18. Stefano Gogioso and Fabrizio Genovese. Quantum field theory in categorical quantum mechanics. In Proceedings of the 15th international conference on quantum physics and logic, QPL'18, Halifax, Canada, June 3-7, 2018, pages 163-177. Waterloo: Open Publishing Association (OPA), 2019. URL: https://eptcs.web.cse.unsw.edu.au/paper.cgi?QPL2018.9.
  19. Maria João Gouveia and Luigi Santocanale. Mix ⋆-autonomous quantales and the continuous weak order. In Jules Desharnais, Walter Guttmann, and Stef Joosten, editors, RAMiCS 2018, volume 11194 of Lecture Notes in Computer Science, pages 184-201. Springer, Cham, 2018. URL: https://doi.org/10.1007/978-3-030-02149-8_12.
  20. Maria João Gouveia and Luigi Santocanale. The continuous weak order. J. Pure Appl. Algebra, 225(2):37, 2021. Id/No 106472. URL: https://doi.org/10.1016/j.jpaa.2020.106472.
  21. Alexandre Grothendieck. Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc., 16:Chapter 1: 196 pp.; Chapter 2: 140, 1955. Google Scholar
  22. D. A. Higgs and K. A. Rowe. Nuclearity in the category of complete semilattices. J. Pure Appl. Algebra, 57(1):67-78, 1989. URL: https://doi.org/10.1016/0022-4049(89)90028-5.
  23. Martin Hyland. Abstract interpretation of proofs: Classical propositional calculus. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic, 18th International Workshop, CSL 2004, Proceedings, volume 3210 of Lecture Notes in Computer Science, pages 6-21. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-30124-0_2.
  24. G. M. Kelly and M. L. Laplaza. Coherence for compact closed categories. J. Pure Appl. Algebra, 19:193-213, 1980. URL: https://doi.org/10.1016/0022-4049(80)90101-2.
  25. Joachim Kock. Frobenius Algebras and 2-D Topological Quantum Field Theories. London Mathematical Society Student Texts. Cambridge University Press, 2003. URL: https://doi.org/10.1017/CBO9780511615443.
  26. David Kruml and Jan Paseka. Algebraic and categorical aspects of quantales. In Handbook of algebra. Vol. 5, volume 5 of Handb. Algebr., pages 323-362. Elsevier/North-Holland, Amsterdam, 2008. URL: https://doi.org/10.1016/S1570-7954(07)05006-1.
  27. Saunders Maclane. Categories for the working mathematician. Graduate Texts in Mathematics. Springer-Verlag New York, 1978. Google Scholar
  28. Roger D. Maddux. Relation algebras, volume 150 of Studies in Logic and the Foundations of Mathematics. Elsevier B. V., Amsterdam, 2006. Google Scholar
  29. George N. Raney. Tight Galois connections and complete distributivity. Trans. Amer. Math. Soc., 97:418-426, 1960. URL: https://doi.org/10.2307/1993380.
  30. Pedro Resende. Quantales, finite observations and strong bisimulation. Theor. Comput. Sci., 254(1-2):95-149, 2001. URL: https://doi.org/10.1016/S0304-3975(99)00123-1.
  31. Kimmo I. Rosenthal. Quantales and their applications, volume 234 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1990. Google Scholar
  32. K. A. Rowe. Nuclearity. Canad. Math. Bull., 31(2):227-235, 1988. URL: https://doi.org/10.4153/CMB-1988-035-5.
  33. Luigi Santocanale. On discrete idempotent paths. In Robert Mercaş and Daniel Reidenbach, editors, Combinatorics on Words. WORDS 2019, volume 11682 of Lecture Notes in Computer Science, pages 312-325. Springer, Cham, 2019. URL: https://doi.org/10.1007/978-3-030-28796-2_25.
  34. Luigi Santocanale. Dualizing sup-preserving endomaps of a complete lattice. In David I. Spivak and Jamie Vicary, editors, Proceedings of ACT 2020, Cambridge, USA, 6-10th July 2020, volume 333 of EPTCS, pages 335-346, 2020. URL: https://doi.org/10.4204/EPTCS.333.23.
  35. Luigi Santocanale. The involutive quantaloid of completely distributive lattices. In Uli Fahrenberg, Peter Jipsen, and Michael Winter, editors, Proceedings of RAMiCS 2020, Palaiseau, France, April 8-11, 2020 [postponed], volume 12062 of Lecture Notes in Computer Science, pages 286-301. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-43520-2_18.
  36. Luigi Santocanale. Skew metrics valued in Sugihara semigroups. In Uli Fahrenberg, Mai Gehrke, Luigi Santocanale, and Michael Winter, editors, Relational and Algebraic Methods in Computer Science - 19th International Conference, RAMiCS 2021, Marseille, France, November 2-5, 2021, Proceedings, volume 13027 of Lecture Notes in Computer Science, pages 396-412. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-88701-8_24.
  37. Luigi Santocanale and Cédric de Lacroix. Frobenius structures in star-autonomous categories. Preprint, July 2022. URL: https://hal.archives-ouvertes.fr/hal-03739197.
  38. Andrea Schalk and Valeria de Paiva. Poset-valued sets or how to build models for linear logics. Theor. Comput. Sci., 315(1):83-107, 2004. URL: https://doi.org/10.1016/j.tcs.2003.11.014.
  39. Ross Street. Frobenius monads and pseudomonoids. J. Math. Phys., 45(10):3930-3948, 2004. URL: https://doi.org/10.1063/1.1788852.
  40. David N. Yetter. Quantales and (noncommutative) linear logic. J. Symb. Log., 55(1):41-64, 1990. URL: https://doi.org/10.2307/2274953.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail