LIPIcs.CSL.2023.33.pdf
- Filesize: 0.77 MB
- 20 pages
The exact complexity of solving parity games is a major open problem. Several authors have searched for efficient algorithms over specific classes of graphs. In particular, Obdržálek showed that for graphs of bounded tree-width or clique-width, the problem is in P, which was later improved by Ganardi, who showed that it is even in LOGCFL (with an additional assumption for clique-width case). Here we extend this line of research by showing that for graphs of bounded tree-depth the problem of solving parity games is in logspace uniform AC⁰. We achieve this by first considering a parameter that we obtain from a modification of clique-width, which we call shallow clique-width. We subsequently provide a suitable reduction.
Feedback for Dagstuhl Publishing