Creative Commons Attribution 4.0 International license
A regular graph G = (V,E) is an (ε,γ) small-set expander if for any set of vertices of fractional size at most ε, at least γ of the edges that are adjacent to it go outside. In this paper, we give a unified approach to several known complexity-theoretic results on small-set expanders. In particular, we show: 1) Max-Cut: we show that if a regular graph G = (V,E) is an (ε,γ) small-set expander that contains a cut of fractional size at least 1-δ, then one can find in G a cut of fractional size at least 1-O(δ/(εγ⁶)) in polynomial time. 2) Improved spectral partitioning, Cheeger’s inequality and the parallel repetition theorem over small-set expanders. The general form of each one of these results involves square-root loss that comes from certain rounding procedure, and we show how this can be avoided over small set expanders. Our main idea is to project a high dimensional vector solution into a low-dimensional space while roughly maintaining 𝓁₂² distances, and then perform a pre-processing step using low-dimensional geometry and the properties of 𝓁₂² distances over it. This pre-processing leverages the small-set expansion property of the graph to transform a vector valued solution to a different vector valued solution with additional structural properties, which give rise to more efficient integral-solution rounding schemes.
@InProceedings{braverman_et_al:LIPIcs.ITCS.2023.26,
author = {Braverman, Mark and Minzer, Dor},
title = {{Rounding via Low Dimensional Embeddings}},
booktitle = {14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
pages = {26:1--26:30},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-263-1},
ISSN = {1868-8969},
year = {2023},
volume = {251},
editor = {Tauman Kalai, Yael},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.26},
URN = {urn:nbn:de:0030-drops-175291},
doi = {10.4230/LIPIcs.ITCS.2023.26},
annote = {Keywords: Parallel Repetition, Small Set Expanders, Semi-Definite Programs}
}