LIPIcs.ITCS.2023.54.pdf
- Filesize: 0.91 MB
- 24 pages
Differential privacy is often applied with a privacy parameter that is larger than the theory suggests is ideal; various informal justifications for tolerating large privacy parameters have been proposed. In this work, we consider partial differential privacy (DP), which allows quantifying the privacy guarantee on a per-attribute basis. We study several basic data analysis and learning tasks in this framework, and design algorithms whose per-attribute privacy parameter is smaller that the best possible privacy parameter for the entire record of a person (i.e., all the attributes).
Feedback for Dagstuhl Publishing