LIPIcs.ITCS.2023.75.pdf
- Filesize: 0.96 MB
- 24 pages
This paper proves the tight sample complexity of Second-Price Auction with Anonymous Reserve, up to a logarithmic factor, for each of all the value distribution families studied in the literature: [0,1]-bounded, [1,H]-bounded, regular, and monotone hazard rate (MHR). Remarkably, the setting-specific tight sample complexity poly(ε^{-1}) depends on the precision ε ∈ (0, 1), but not on the number of bidders n ≥ 1. Further, in the two bounded-support settings, our learning algorithm allows correlated value distributions. In contrast, the tight sample complexity Θ̃(n) ⋅ poly(ε^{-1}) of Myerson Auction proved by Guo, Huang and Zhang (STOC 2019) has a nearly-linear dependence on n ≥ 1, and holds only for independent value distributions in every setting. We follow a similar framework as the Guo-Huang-Zhang work, but replace their information theoretical arguments with a direct proof.
Feedback for Dagstuhl Publishing