LIPIcs.ITCS.2023.77.pdf
- Filesize: 0.97 MB
- 26 pages
We study random constraint satisfaction problems (CSPs) at large clause density. We relate the structure of near-optimal solutions for any Boolean Max-CSP to that for an associated spin glass on the hypercube, using the Guerra-Toninelli interpolation from statistical physics. The noise stability polynomial of the CSP’s predicate is, up to a constant, the mixture polynomial of the associated spin glass. We show two main consequences: 1) We prove that the maximum fraction of constraints that can be satisfied in a random Max-CSP at large clause density is determined by the ground state energy density of the corresponding spin glass. Since the latter value can be computed with the Parisi formula [Parisi, 1980; Talagrand, 2006; Auffinger and Chen, 2017], we provide numerical values for some popular CSPs. 2) We prove that a Max-CSP at large clause density possesses generalized versions of the overlap gap property if and only if the same holds for the corresponding spin glass. We transfer results from [Huang and Sellke, 2021] to obstruct algorithms with overlap concentration on a large class of Max-CSPs. This immediately includes local classical and local quantum algorithms [Chou et al., 2022].
Feedback for Dagstuhl Publishing