LIPIcs.ITCS.2023.82.pdf
- Filesize: 0.7 MB
- 18 pages
With the power of quantum information, we can achieve exciting and classically impossible cryptographic primitives. However, almost all quantum cryptography faces extreme difficulties with the near-term intermediate-scale quantum technology (NISQ technology); namely, the short lifespan of quantum states and limited sequential computation. At the same time, considering only limited quantum adversaries may still enable us to achieve never-before-possible tasks. In this work, we consider quantum cryptographic primitives against limited quantum adversaries - depth-bounded adversaries. We introduce a model for (depth-bounded) NISQ computers, which are classical circuits interleaved with shallow quantum circuits. Then, we show one-time memory can be achieved against any depth-bounded quantum adversaries introduced in the work, with their depth being any pre-fixed polynomial. Therefore we obtain applications like one-time programs and one-time proofs. Finally, we show our one-time memory has correctness even against constant-rate errors.
Feedback for Dagstuhl Publishing