Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

Authors Pierre Bergé , Édouard Bonnet , Hugues Déprés, Rémi Watrigant



PDF
Thumbnail PDF

File

LIPIcs.STACS.2023.10.pdf
  • Filesize: 0.84 MB
  • 15 pages

Document Identifiers

Author Details

Pierre Bergé
  • Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
Édouard Bonnet
  • Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
Hugues Déprés
  • Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
Rémi Watrigant
  • Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Acknowledgements

We thank Colin Geniet, Eunjung Kim, and Stéphan Thomassé for useful discussions.

Cite As Get BibTex

Pierre Bergé, Édouard Bonnet, Hugues Déprés, and Rémi Watrigant. Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.STACS.2023.10

Abstract

For any ε > 0, we give a polynomial-time n^ε-approximation algorithm for Max Independent Set in graphs of bounded twin-width given with an O(1)-sequence. This result is derived from the following time-approximation trade-off: We establish an O(1)^{2^q-1}-approximation algorithm running in time exp(O_q(n^{2^{-q}})), for every integer q ⩾ 0. Guided by the same framework, we obtain similar approximation algorithms for Min Coloring and Max Induced Matching. In general graphs, all these problems are known to be highly inapproximable: for any ε > 0, a polynomial-time n^{1-ε}-approximation for any of them would imply that P=NP [Håstad, FOCS '96; Zuckerman, ToC '07; Chalermsook et al., SODA '13]. We generalize the algorithms for Max Independent Set and Max Induced Matching to the independent (induced) packing of any fixed connected graph H.
In contrast, we show that such approximation guarantees on graphs of bounded twin-width given with an O(1)-sequence are very unlikely for Min Independent Dominating Set, and somewhat unlikely for Longest Path and Longest Induced Path. Regarding the existence of better approximation algorithms, there is a (very) light evidence that the obtained approximation factor of n^ε for Max Independent Set may be best possible. This is the first in-depth study of the approximability of problems in graphs of bounded twin-width. Prior to this paper, essentially the only such result was a polynomial-time O(1)-approximation algorithm for Min Dominating Set [Bonnet et al., ICALP '21].

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Approximation algorithms
  • bounded twin-width

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Nikhil Bansal, Parinya Chalermsook, Bundit Laekhanukit, Danupon Nanongkai, and Jesper Nederlof. New tools and connections for exponential-time approximation. Algorithmica, 81(10):3993-4009, 2019. URL: https://doi.org/10.1007/s00453-018-0512-8.
  2. Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is NP-complete. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 18:1-18:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.18.
  3. Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and Stéphan Thomassé. Twin-width VIII: delineation and win-wins. CoRR, abs/2204.00722, 2022. URL: https://doi.org/10.48550/arXiv.2204.00722.
  4. Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width II: small classes. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1977-1996, 2021. URL: https://doi.org/10.1137/1.9781611976465.118.
  5. Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width III: max independent set, min dominating set, and coloring. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 35:1-35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.35.
  6. Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20-24, 2022, pages 924-937. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520037.
  7. Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: tractable FO model checking. J. ACM, 69(1):3:1-3:46, 2022. URL: https://doi.org/10.1145/3486655.
  8. Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos. Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms. Discret. Appl. Math., 159(17):1954-1970, 2011. URL: https://doi.org/10.1016/j.dam.2011.07.009.
  9. Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. Graph products revisited: Tight approximation hardness of induced matching, poset dimension and more. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1557-1576. SIAM, 2013. URL: https://doi.org/10.1137/1.9781611973105.112.
  10. Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. Independent set, induced matching, and pricing: Connections and tight (subexponential time) approximation hardnesses. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 370-379, 2013. URL: https://doi.org/10.1109/FOCS.2013.47.
  11. Marek Cygan, Lukasz Kowalik, Marcin Pilipczuk, and Mateusz Wykurz. Exponential-time approximation of hard problems. CoRR, abs/0810.4934, 2008. URL: http://arxiv.org/abs/0810.4934.
  12. Irit Dinur and David Steurer. Analytical approach to parallel repetition. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 624-633. ACM, 2014. URL: https://doi.org/10.1145/2591796.2591884.
  13. Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Approximating clique is almost NP-complete (preliminary version). In 32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages 2-12. IEEE Computer Society, 1991. URL: https://doi.org/10.1109/SFCS.1991.185341.
  14. Harold N. Gabow and Shuxin Nie. Finding a long directed cycle. ACM Trans. Algorithms, 4(1):7:1-7:21, 2008. URL: https://doi.org/10.1145/1328911.1328918.
  15. Jakub Gajarský, Michal Pilipczuk, Wojciech Przybyszewski, and Szymon Torunczyk. Twin-width and types. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 123:1-123:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.123.
  16. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. Google Scholar
  17. Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in linear time. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 82-101, 2014. URL: https://doi.org/10.1137/1.9781611973402.7.
  18. Magnús M. Halldórsson. Approximating the minimum maximal independence number. Inf. Process. Lett., 46(4):169-172, 1993. URL: https://doi.org/10.1016/0020-0190(93)90022-2.
  19. Johan Håstad. Clique is hard to approximate within n^1-ε. In 37th Annual Symposium on Foundations of Computer Science, FOCS '96, Burlington, Vermont, USA, 14-16 October, 1996, pages 627-636, 1996. URL: https://doi.org/10.1109/SFCS.1996.548522.
  20. Petr Hliněný. Twin-width of planar graphs is at most 9, 2022. URL: https://doi.org/10.48550/arXiv.2205.05378.
  21. Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727.
  22. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. URL: https://doi.org/10.1006/jcss.2001.1774.
  23. Stefan Kratsch, Florian Nelles, and Alexandre Simon. On triangle counting parameterized by twin-width. CoRR, abs/2202.06708, 2022. URL: http://arxiv.org/abs/2202.06708.
  24. Carsten Lund and Mihalis Yannakakis. The approximation of maximum subgraph problems. In Andrzej Lingas, Rolf G. Karlsson, and Svante Carlsson, editors, Automata, Languages and Programming, 20nd International Colloquium, ICALP93, Lund, Sweden, July 5-9, 1993, Proceedings, volume 700 of Lecture Notes in Computer Science, pages 40-51. Springer, 1993. URL: https://doi.org/10.1007/3-540-56939-1_60.
  25. Jesper Nederlof. Inclusion exclusion for hard problems, 2008. Google Scholar
  26. Michal Pilipczuk, Marek Sokolowski, and Anna Zych-Pawlewicz. Compact representation for matrices of bounded twin-width. In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages 52:1-52:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.STACS.2022.52.
  27. David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing, 3(1):103-128, 2007. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail