LIPIcs.STACS.2023.46.pdf
- Filesize: 0.97 MB
- 13 pages
Let 𝜑 be a sentence of CMSO₂ (monadic second-order logic with quantification over edge subsets and counting modular predicates) over the signature of graphs. We present a dynamic data structure that for a given graph G that is updated by edge insertions and edge deletions, maintains whether 𝜑 is satisfied in G. The data structure is required to correctly report the outcome only when the feedback vertex number of G does not exceed a fixed constant k, otherwise it reports that the feedback vertex number is too large. With this assumption, we guarantee amortized update time O_{𝜑,k}(log n). By combining this result with a classic theorem of Erdős and Pósa, we give a fully dynamic data structure that maintains whether a graph contains a packing of k vertex-disjoint cycles with amortized update time O_k(log n). Our data structure also works in a larger generality of relational structures over binary signatures.
Feedback for Dagstuhl Publishing