Labeled Nearest Neighbor Search and Metric Spanners via Locality Sensitive Orderings

Author Arnold Filtser



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2023.33.pdf
  • Filesize: 0.96 MB
  • 18 pages

Document Identifiers

Author Details

Arnold Filtser
  • Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel

Cite As Get BibTex

Arnold Filtser. Labeled Nearest Neighbor Search and Metric Spanners via Locality Sensitive Orderings. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 33:1-33:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.SoCG.2023.33

Abstract

Chan, Har-Peled, and Jones [SICOMP 2020] developed locality-sensitive orderings (LSO) for Euclidean space. A (τ,ρ)-LSO is a collection Σ of orderings such that for every x,y ∈ ℝ^d there is an ordering σ ∈ Σ, where all the points between x and y w.r.t. σ are in the ρ-neighborhood of either x or y. In essence, LSO allow one to reduce problems to the 1-dimensional line. Later, Filtser and Le [STOC 2022] developed LSO’s for doubling metrics, general metric spaces, and minor free graphs.
For Euclidean and doubling spaces, the number of orderings in the LSO is exponential in the dimension, which made them mainly useful for the low dimensional regime. In this paper, we develop new LSO’s for Euclidean, 𝓁_p, and doubling spaces that allow us to trade larger stretch for a much smaller number of orderings. We then use our new LSO’s (as well as the previous ones) to construct path reporting low hop spanners, fault tolerant spanners, reliable spanners, and light spanners for different metric spaces.
While many nearest neighbor search (NNS) data structures were constructed for metric spaces with implicit distance representations (where the distance between two metric points can be computed using their names, e.g. Euclidean space), for other spaces almost nothing is known. In this paper we initiate the study of the labeled NNS problem, where one is allowed to artificially assign labels (short names) to metric points. We use LSO’s to construct efficient labeled NNS data structures in this model.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Theory of computation → Sparsification and spanners
Keywords
  • Locality sensitive ordering
  • nearest neighbor search
  • high dimensional Euclidean space
  • doubling dimension
  • planar and minor free graphs
  • path reporting low hop spanner
  • fault tolerant spanner
  • reliable spanner
  • light spanner

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ittai Abraham, Yair Bartal, and Ofer Neiman. Advances in metric embedding theory. Advances in Mathematics, 228(6):3026-3126, 2011. URL: https://doi.org/10.1016/j.aim.2011.08.003.
  2. Ittai Abraham, Shiri Chechik, Michael Elkin, Arnold Filtser, and Ofer Neiman. Ramsey spanning trees and their applications. ACM Trans. Algorithms, 16(2):19:1-19:21, 2020. preliminary version published in SODA 2018. URL: https://doi.org/10.1145/3371039.
  3. Ittai Abraham, Shiri Chechik, Robert Krauthgamer, and Udi Wieder. Approximate nearest neighbor search in metrics of planar graphs. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA, volume 40 of LIPIcs, pages 20-42. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.20.
  4. Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence. Graph spanners: A tutorial review. Comput. Sci. Rev., 37:100253, 2020. URL: https://doi.org/10.1016/j.cosrev.2020.100253.
  5. Ibrahim Akgün and Barbaros Ç. Tansel. New formulations of the hop-constrained minimum spanning tree problem via miller-tucker-zemlin constraints. Eur. J. Oper. Res., 212(2):263-276, 2011. URL: https://doi.org/10.1016/j.ejor.2011.01.051.
  6. N. Alon and B. Schieber. Optimal preprocessing for answering on-line product queries. Technical report, Tel-Aviv University, 1987. Google Scholar
  7. B. Alspach. The wonderful Walecki construction. Bull. Inst. Combin. Appl, 52:7-20, 2008. see URL: https://www.researchgate.net/publication/267666953_The_wonderful_Walecki_construction.
  8. Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse spanners of weighted graphs. Discret. Comput. Geom., 9:81-100, 1993. URL: https://doi.org/10.1007/BF02189308.
  9. Alexandr Andoni. Nearest neighbor search: the old, the new, and the impossible. PhD thesis, Massachusetts Institute of Technology, 2009. see URL: https://www.cs.columbia.edu/~andoni/thesis/main.pdf.
  10. Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM, 51(1):117-122, 2008. Preliminary version published in FOCS 2006. URL: https://doi.org/10.1145/1327452.1327494.
  11. Alexandr Andoni, Piotr Indyk, and Ilya P. Razenshteyn. Approximate nearest neighbor search in high dimensions. CoRR, abs/1806.09823, 2018. URL: https://arxiv.org/abs/1806.09823.
  12. Alexandr Andoni, Huy L. Nguyen, Aleksandar Nikolov, Ilya P. Razenshteyn, and Erik Waingarten. Approximate near neighbors for general symmetric norms. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 902-913. ACM, 2017. URL: https://doi.org/10.1145/3055399.3055418.
  13. Alexandr Andoni, Aleksandar Nikolov, Ilya P. Razenshteyn, and Erik Waingarten. Approximate nearest neighbors beyond space partitions. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1171-1190. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.72.
  14. Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected shortest paths via low hop emulators. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 322-335. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384321.
  15. Baruch Awerbuch and David Peleg. Sparse partitions. In Proceedings of the 31st IEEE Symposium on Foundations of Computer Science (FOCS), pages 503-513, 1990. URL: https://doi.org/10.1109/FSCS.1990.89571.
  16. Anantaram Balakrishnan and Kemal Altinkemer. Using a hop-constrained model to generate alternative communication network design. INFORMS J. Comput., 4(2):192-205, 1992. URL: https://doi.org/10.1287/ijoc.4.2.192.
  17. Yair Bartal. Advances in metric ramsey theory and its applications. CoRR, abs/2104.03484, 2021. URL: https://arxiv.org/abs/2104.03484.
  18. Yair Bartal, Arnold Filtser, and Ofer Neiman. On notions of distortion and an almost minimum spanning tree with constant average distortion. J. Comput. Syst. Sci., 105:116-129, 2019. preliminary version published in SODA 2016. URL: https://doi.org/10.1016/j.jcss.2019.04.006.
  19. Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. Some low distortion metric ramsey problems. Discret. Comput. Geom., 33(1):27-41, 2005. URL: https://doi.org/10.1007/s00454-004-1100-z.
  20. Greg Bodwin, Michael Dinitz, Merav Parter, and Virginia Vassilevska Williams. Optimal vertex fault tolerant spanners (for fixed stretch). In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1884-1900, 2018. URL: https://doi.org/10.1137/1.9781611975031.123.
  21. Greg Bodwin, Michael Dinitz, and Caleb Robelle. Optimal vertex fault-tolerant spanners in polynomial time. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2924-2938. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.174.
  22. Greg Bodwin and Shyamal Patel. A trivial yet optimal solution to vertex fault tolerant spanners. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 541-543, 2019. URL: https://doi.org/10.1145/3293611.3331588.
  23. Jérôme De Boeck and Bernard Fortz. Extended formulation for hop constrained distribution network configuration problems. Eur. J. Oper. Res., 265(2):488-502, 2018. URL: https://doi.org/10.1016/j.ejor.2017.08.017.
  24. G. Borradaile, H. Le, and C. Wulff-Nilsen. Minor-free graphs have light spanners. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science, FOCS '17, pages 767-778, 2017. URL: https://doi.org/10.1109/FOCS.2017.76.
  25. G. Borradaile, H. Le, and C. Wulff-Nilsen. Greedy spanners are optimal in doubling metrics. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA `19, pages 2371-2379, 2019. URL: https://doi.org/10.1137/1.9781611975482.145.
  26. Prosenjit Bose, Vida Dujmovic, Pat Morin, and Michiel H. M. Smid. Robust geometric spanners. SIAM J. Comput., 42(4):1720-1736, 2013. preliminary version published in SOCG 2013. URL: https://doi.org/10.1137/120874473.
  27. Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. A spanner for the day after. In 35th International Symposium on Computational Geometry, SoCG 2019, June 18-21, 2019, Portland, Oregon, USA, pages 19:1-19:15, 2019. URL: https://doi.org/10.4230/LIPIcs.SoCG.2019.19.
  28. Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. Sometimes reliable spanners of almost linear size. In 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), pages 27:1-27:15, 2020. URL: https://doi.org/10.4230/LIPIcs.ESA.2020.27.
  29. T.-H. Hubert Chan and Anupam Gupta. Approximating TSP on metrics with bounded global growth. SIAM J. Comput., 41(3):587-617, 2012. preliminary version published in SODA 2008. URL: https://doi.org/10.1137/090749396.
  30. Timothy M. Chan, Sariel Har-Peled, and Mitchell Jones. On locality-sensitive orderings and their applications. SIAM J. Comput., 49(3):583-600, 2020. preliminary version published in ITCS 2019. URL: https://doi.org/10.1137/19M1246493.
  31. Barun Chandra, Gautam Das, Giri Narasimhan, and José Soares. New sparseness results on graph spanners. Int. J. Comput. Geom. Appl., 5:125-144, 1995. preliminary version published in SOCG 1992. URL: https://doi.org/10.1142/S0218195995000088.
  32. Moses Charikar, Chandra Chekuri, Ashish Goel, and Sudipto Guha. Rounding via trees: deterministic approximation algorithms for group steiner trees and k-median. In STOC '98: Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 114-123, New York, NY, USA, 1998. ACM Press. URL: https://doi.org/10.1145/276698.276719.
  33. Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge A. Plotkin. Approximating a finite metric by a small number of tree metrics. In 39th Annual Symposium on Foundations of Computer Science, FOCS '98, November 8-11, 1998, Palo Alto, California, USA, pages 379-388. IEEE Computer Society, 1998. URL: https://doi.org/10.1109/SFCS.1998.743488.
  34. Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault tolerant spanners for general graphs. SIAM J. Comput., 39(7):3403-3423, 2010. preliminary version published in STOC 2009. URL: https://doi.org/10.1137/090758039.
  35. Shiri Chechik and Christian Wulff-Nilsen. Near-optimal light spanners. ACM Trans. Algorithms, 14(3):33:1-33:15, 2018. preliminary version published in SODA 2016. URL: https://doi.org/10.1145/3199607.
  36. Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest paths. J. ACM, 47(1):132-166, 2000. preliminary version published in STOC 1994. URL: https://doi.org/10.1145/331605.331610.
  37. Vincent Cohen-Addad, Arnold Filtser, Philip N. Klein, and Hung Le. On light spanners, low-treewidth embeddings and efficient traversing in minor-free graphs. CoRR, abs/2009.05039, 2020. To appear in FOCS 2020, URL: https://arxiv.org/abs/2009.05039.
  38. Gautam Das, Paul J. Heffernan, and Giri Narasimhan. Optimally sparse spanners in 3-dimensional euclidean space. In Chee Yap, editor, Proceedings of the Ninth Annual Symposium on Computational GeometrySan Diego, CA, USA, May 19-21, 1993, pages 53-62. ACM, 1993. URL: https://doi.org/10.1145/160985.160998.
  39. Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing, PODC 2011, San Jose, CA, USA, June 6-8, 2011, pages 169-178, 2011. URL: https://doi.org/10.1145/1993806.1993830.
  40. Michael Dinitz and Caleb Robelle. Efficient and simple algorithms for fault-tolerant spanners. In PODC '20: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, August 3-7, 2020, pages 493-500, 2020. URL: https://doi.org/10.1145/3382734.3405735.
  41. Anne Driemel and Francesco Silvestri. Locality-Sensitive Hashing of Curves. In Proceedings of the 33rd International Symposium on Computational Geometry, volume 77, pages 37:1-37:16, Brisbane, Australia, July 2017. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.SoCG.2017.37.
  42. Michael Elkin, Ofer Neiman, and Shay Solomon. Light spanners. SIAM J. Discret. Math., 29(3):1312-1321, 2015. URL: https://doi.org/10.1137/140979538.
  43. Ioannis Z. Emiris and Ioannis Psarros. Products of euclidean metrics and applications to proximity questions among curves. In Bettina Speckmann and Csaba D. Tóth, editors, 34th International Symposium on Computational Geometry, SoCG 2018, June 11-14, 2018, Budapest, Hungary, volume 99 of LIPIcs, pages 37:1-37:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.SoCG.2018.37.
  44. P. Erdős. Extremal problems in graph theory. Theory of Graphs and Its Applications (Proc. Sympos. Smolenice), pages 29-36, 1964. see URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.210.7240.
  45. Arnold Filtser. On strong diameter padded decompositions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of Technology, Cambridge, MA, USA, pages 6:1-6:21, 2019. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.6.
  46. Arnold Filtser. Labeled nearest neighbor search and metric spanners via locality sensitive orderings. CoRR, abs/2211.11846, 2022. URL: https://doi.org/10.48550/arXiv.2211.11846.
  47. Arnold Filtser, Omrit Filtser, and Matthew J. Katz. Approximate nearest neighbor for curves - simple, efficient, and deterministic. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 48:1-48:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.48.
  48. Arnold Filtser and Hung Le. Clan embeddings into trees, and low treewidth graphs. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 342-355. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451043.
  49. Arnold Filtser and Hung Le. Locality-sensitive orderings and applications to reliable spanners. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1066-1079. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520042.
  50. Arnold Filtser and Ofer Neiman. Light spanners for high dimensional norms via stochastic decompositions. Algorithmica, 2022. URL: https://doi.org/10.1007/s00453-022-00994-0.
  51. Arnold Filtser and Shay Solomon. The greedy spanner is existentially optimal. SIAM J. Comput., 49(2):429-447, 2020. preliminary version published in PODC 2016. URL: https://doi.org/10.1137/18M1210678.
  52. J. Gao, L. J. Guibas, and A. Nguyen. Deformable spanners and applications. Computational Geometry, 35(1):2-19, 2006. URL: https://doi.org/10.1016/j.comgeo.2005.10.001.
  53. Lee-Ad Gottlieb. A light metric spanner. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 759-772, 2015. URL: https://doi.org/10.1109/FOCS.2015.52.
  54. Luis Eduardo Neves Gouveia and Thomas L. Magnanti. Network flow models for designing diameter-constrained minimum-spanning and steiner trees. Networks, 41(3):159-173, 2003. URL: https://doi.org/10.1002/net.10069.
  55. Luis Eduardo Neves Gouveia, Pedro Patrício, Amaro de Sousa, and Rui Valadas. MPLS over WDM network design with packet level qos constraints based on ILP models. In Proceedings IEEE INFOCOM 2003, The 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, San Franciso, CA, USA, March 30 - April 3, 2003, pages 576-586, 2003. URL: https://doi.org/10.1109/INFCOM.2003.1208708.
  56. Sariel Har-Peled, Piotr Indyk, and Anastasios Sidiropoulos. Euclidean spanners in high dimensions. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 804-809, 2013. URL: https://doi.org/10.1137/1.9781611973105.57.
  57. Sariel Har-Peled, Manor Mendel, and Dániel Oláh. Reliable Spanners for Metric Spaces. In 37th International Symposium on Computational Geometry, SoCG'21, pages 43:1-43:13, 2021. Full version at https://arxiv.org/abs/2007.08738. URL: https://doi.org/10.4230/LIPIcs.SoCG.2021.43.
  58. Piotr Indyk. On approximate nearest neighbors under 𝓁_∞ norm. J. Comput. Syst. Sci., 63(4):627-638, 2001. URL: https://doi.org/10.1006/jcss.2001.1781.
  59. Piotr Indyk. Approximate nearest neighbor algorithms for Fréchet distance via product metrics. In Proceedings of the 8th Symposium on Computational Geometry, pages 102-106, Barcelona, Spain, June 2002. ACM Press. URL: https://doi.org/10.1145/513400.513414.
  60. Piotr Indyk and Nitin Thaper. Fast image retrieval via embeddings. In 3rd international workshop on statistical and computational theories of vision, volume 2(3), page 5. Nice, France, 2003. see URL: https://people.csail.mit.edu/indyk/emd.pdf.
  61. William Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathematics, 26:189-206, 1984. see URL: https://link.springer.com/article/10.1007/BF02764938.
  62. Omri Kahalon, Hung Le, Lazar Milenkovic, and Shay Solomon. Can't see the forest for the trees: Navigating metric spaces by bounded hop-diameter spanners. In Alessia Milani and Philipp Woelfel, editors, PODC '22: ACM Symposium on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages 151-162. ACM, 2022. URL: https://doi.org/10.1145/3519270.3538414.
  63. P. N. Klein. Subset spanner for planar graphs, with application to subset TSP. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, STOC '06, pages 749-756, 2006. URL: https://doi.org/10.1145/1132516.1132620.
  64. Philip N. Klein. Preprocessing an undirected planar network to enable fast approximate distance queries. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages 820-827, 2002. see https://dl.acm.org/doi/abs/10.5555/545381.545488. URL: http://dl.acm.org/citation.cfm?id=545381.545488.
  65. Philip N. Klein. A linear-time approximation scheme for TSP in undirected planar graphs with edge-weights. SIAM J. Comput., 37(6):1926-1952, 2008. URL: https://doi.org/10.1137/060649562.
  66. Robert Krauthgamer and James R. Lee. The black-box complexity of nearest-neighbor search. Theor. Comput. Sci., 348(2-3):262-276, 2005. URL: https://doi.org/10.1016/j.tcs.2005.09.017.
  67. Hung Le. A PTAS for subset TSP in minor-free graphs. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2279-2298, 2020. URL: https://doi.org/10.1137/1.9781611975994.140.
  68. Hung Le, Lazar Milenkovic, and Shay Solomon. Sparse euclidean spanners with tiny diameter: A tight lower bound. In Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on Computational Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages 54:1-54:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.SoCG.2022.54.
  69. Hung Le and Shay Solomon. A unified framework of light spanners II: fine-grained optimality. CoRR, abs/2111.13748, 2021. URL: https://arxiv.org/abs/2111.13748.
  70. Hung Le and Christian Wulff-Nilsen. Optimal approximate distance oracle for planar graphs. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 363-374. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00044.
  71. Larry J. LeBlanc, Jerome Chifflet, and Philippe Mahey. Packet routing in telecommunication networks with path and flow restrictions. INFORMS J. Comput., 11(2):188-197, 1999. URL: https://doi.org/10.1287/ijoc.11.2.188.
  72. Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid. Improved algorithms for constructing fault-tolerant spanners. Algorithmica, 32(1):144-156, 2002. preliminary version published in STOC 1998. URL: https://doi.org/10.1007/s00453-001-0075-x.
  73. Yaowei Long and Seth Pettie. Planar distance oracles with better time-space tradeoffs. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2517-2537. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.149.
  74. Tamás Lukovszki. New results on fault tolerant geometric spanners. In Frank Dehne, Jörg-Rüdiger Sack, Arvind Gupta, and Roberto Tamassia, editors, Algorithms and Data Structures, pages 193-204, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/3-540-48447-7_20.
  75. Jiří Matoušek. On the distortion required for embedding finite metric spaces into normed spaces. Israel Journal of Mathematics, 93(1):333-344, 1996. URL: https://doi.org/10.1007/BF02761110.
  76. Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures. Journal of the European Mathematical Society, 9(2):253-275, 2007. Google Scholar
  77. Giri Narasimhan and Michiel H. M. Smid. Geometric spanner networks. Cambridge University Press, 2007. URL: https://doi.org/10.1017/CBO9780511546884.
  78. Huy L. Nguyen. Approximate nearest neighbor search in 𝓁_p. CoRR, abs/1306.3601, 2013. URL: https://arxiv.org/abs/1306.3601.
  79. Rafail Ostrovsky and Yuval Rabani. Low distortion embeddings for edit distance. J. ACM, 54(5):23, 2007. URL: https://doi.org/10.1145/1284320.1284322.
  80. Merav Parter. Nearly optimal vertex fault-tolerant spanners in optimal time: sequential, distributed, and parallel. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1080-1092. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520047.
  81. Hasan Pirkul and Samit Soni. New formulations and solution procedures for the hop constrained network design problem. Eur. J. Oper. Res., 148(1):126-140, 2003. URL: https://doi.org/10.1016/S0377-2217(02)00366-1.
  82. André Rossi, Alexis Aubry, and Mireille Jacomino. Connectivity-and-hop-constrained design of electricity distribution networks. Eur. J. Oper. Res., 218(1):48-57, 2012. URL: https://doi.org/10.1016/j.ejor.2011.10.006.
  83. Shay Solomon. From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners for doubling metrics. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 363-372, 2014. URL: https://doi.org/10.1145/2591796.2591864.
  84. M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs. Journal of the ACM, 51(6):993-1024, 2004. URL: https://doi.org/10.1145/1039488.1039493.
  85. Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1-24, 2005. preliminary version published in STOC 2001. URL: https://doi.org/10.1145/1044731.1044732.
  86. Dan E. Willard. Log-logarithmic worst-case range queries are possible in space theta(n). Inf. Process. Lett., 17(2):81-84, 1983. URL: https://doi.org/10.1016/0020-0190(83)90075-3.
  87. Kathleen A. Woolston and Susan L. Albin. The design of centralized networks with reliability and availability constraints. Comput. Oper. Res., 15(3):207-217, 1988. URL: https://doi.org/10.1016/0305-0548(88)90033-0.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail