Greedy Permutations and Finite Voronoi Diagrams (Media Exposition)

Authors Oliver A. Chubet , Paul Macnichol, Parth Parikh, Donald R. Sheehy , Siddharth S. Sheth



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2023.64.pdf
  • Filesize: 1.05 MB
  • 5 pages

Document Identifiers

Author Details

Oliver A. Chubet
  • North Carolina State University, Raleigh, NC, USA
Paul Macnichol
  • North Carolina State University, Raleigh, NC, USA
Parth Parikh
  • North Carolina State University, Raleigh, NC, USA
Donald R. Sheehy
  • North Carolina State University, Raleigh, NC, USA
Siddharth S. Sheth
  • North Carolina State University, Raleigh, NC, USA

Cite AsGet BibTex

Oliver A. Chubet, Paul Macnichol, Parth Parikh, Donald R. Sheehy, and Siddharth S. Sheth. Greedy Permutations and Finite Voronoi Diagrams (Media Exposition). In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 64:1-64:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.SoCG.2023.64

Abstract

We illustrate the computation of a greedy permutation using finite Voronoi diagrams. We describe the neighbor graph, which is a sparse graph data structure that facilitates efficient point location to insert a new Voronoi cell. This data structure is not dependent on a Euclidean metric space. The greedy permutation is computed in O(nlog Δ) time for low-dimensional data using this method [Sariel Har-Peled and Manor Mendel, 2006; Donald R. Sheehy, 2020].

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • greedy permutation
  • Voronoi diagrams

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Kenneth L. Clarkson. Nearest neighbor queries in metric spaces. Discrete & Computational Geometry, 22(1):63-93, 1999. Google Scholar
  2. M.E Dyer and A.M Frieze. A simple heuristic for the p-centre problem. Operations Research Letters, 3(6):285-288, 1985. URL: https://doi.org/10.1016/0167-6377(85)90002-1.
  3. Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293-306, 1985. URL: https://doi.org/10.1016/0304-3975(85)90224-5.
  4. Sariel Har-Peled and Manor Mendel. Fast construction of nets in low dimensional metrics, and their applications. SIAM Journal on Computing, 35(5):1148-1184, 2006. Google Scholar
  5. Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis, II. An analysis of several heuristics for the traveling salesman problem. SIAM journal on computing, 6(3):563-581, 1977. Google Scholar
  6. Donald R. Sheehy. greedypermutations. https://anonymous.4open.science/r/greedypermutation-C50B, 2020. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail