@InProceedings{amalou_et_al:LIPIcs.ECRTS.2023.7,
author = {Amalou, Abderaouf N and Fromont, Elisa and Puaut, Isabelle},
title = {{CAWET: Context-Aware Worst-Case Execution Time Estimation Using Transformers}},
booktitle = {35th Euromicro Conference on Real-Time Systems (ECRTS 2023)},
pages = {7:1--7:20},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-280-8},
ISSN = {1868-8969},
year = {2023},
volume = {262},
editor = {Papadopoulos, Alessandro V.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2023.7},
URN = {urn:nbn:de:0030-drops-180367},
doi = {10.4230/LIPIcs.ECRTS.2023.7},
annote = {Keywords: Worst-case execution time, machine learning, transformers, hybrid technique}
}