LIPIcs.ICALP.2023.2.pdf
- Filesize: 377 kB
- 1 pages
In this talk, I will explain a new algorithm for computing exact maximum and minimum-cost flows in almost-linear time, settling the time complexity of these basic graph problems up to subpolynomial factors. Our algorithm uses a novel interior point method that builds the optimal flow as a sequence of approximate minimum-ratio cycles, each of which is computed and processed very efficiently using a new dynamic data structure. By well-known reductions, our result implies almost-linear time algorithms for several problems including bipartite matching, optimal transport, and undirected vertex connectivity. Our framework also extends to minimizing general edge-separable convex functions to high accuracy, yielding the first almost-linear time algorithms for many other problems including entropy-regularized optimal transport, matrix scaling, p-norm flows, and isotonic regression. This talk is based on joint work with Li Chen, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva [Chen et al., 2022]. Our result appeared in FOCS'22 and won the FOCS best paper award.
Feedback for Dagstuhl Publishing