We address long-standing open questions raised by Williamson, Goemans, Vazirani and Mihail pertaining to the design of approximation algorithms for problems in network design via the primal-dual method (Combinatorica 15(3):435-454, 1995). Williamson et al. prove an approximation ratio of two for connectivity augmentation problems where the connectivity requirements can be specified by uncrossable functions. They state: "Extending our algorithm to handle non-uncrossable functions remains a challenging open problem. The key feature of uncrossable functions is that there exists an optimal dual solution which is laminar... A larger open issue is to explore further the power of the primal-dual approach for obtaining approximation algorithms for other combinatorial optimization problems." Our main result proves a 16-approximation ratio via the primal-dual method for a class of functions that generalizes the notion of an uncrossable function. There exist instances that can be handled by our methods where none of the optimal dual solutions have a laminar support. We present applications of our main result to three network-design problems. 1) A 16-approximation algorithm for augmenting the family of small cuts of a graph G. The previous best approximation ratio was O(log |V(G)|). 2) A 16⋅⌈k/u_min⌉-approximation algorithm for the Cap-k-ECSS problem which is as follows: Given an undirected graph G = (V,E) with edge costs c ∈ ℚ_{≥0}^E and edge capacities u ∈ ℤ_{≥0}^E, find a minimum cost subset of the edges F ⊆ E such that the capacity across any cut in (V,F) is at least k; u_min (respectively, u_max) denote the minimum (respectively, maximum) capacity of an edge in E, and w.l.o.g. u_max ≤ k. The previous best approximation ratio was min(O(log|V|), k, 2u_max). 3) A 20-approximation algorithm for the model of (p,2)-Flexible Graph Connectivity. The previous best approximation ratio was O(log|V(G)|), where G denotes the input graph.
@InProceedings{bansal_et_al:LIPIcs.ICALP.2023.15, author = {Bansal, Ishan and Cheriyan, Joseph and Grout, Logan and Ibrahimpur, Sharat}, title = {{Improved Approximation Algorithms by Generalizing the Primal-Dual Method Beyond Uncrossable Functions}}, booktitle = {50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)}, pages = {15:1--15:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-278-5}, ISSN = {1868-8969}, year = {2023}, volume = {261}, editor = {Etessami, Kousha and Feige, Uriel and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.15}, URN = {urn:nbn:de:0030-drops-180678}, doi = {10.4230/LIPIcs.ICALP.2023.15}, annote = {Keywords: Approximation algorithms, Edge-connectivity of graphs, f-Connectivity problem, Flexible Graph Connectivity, Minimum cuts, Network design, Primal-dual method, Small cuts} }
Feedback for Dagstuhl Publishing