Parameterized Complexity of Binary CSP: Vertex Cover, Treedepth, and Related Parameters

Authors Hans L. Bodlaender , Carla Groenland , Michał Pilipczuk



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2023.27.pdf
  • Filesize: 0.87 MB
  • 20 pages

Document Identifiers

Author Details

Hans L. Bodlaender
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
Carla Groenland
  • Mathematical Institute, Utrecht University, The Netherlands
Michał Pilipczuk
  • Institute of Informatics, University of Warsaw, Poland

Cite As Get BibTex

Hans L. Bodlaender, Carla Groenland, and Michał Pilipczuk. Parameterized Complexity of Binary CSP: Vertex Cover, Treedepth, and Related Parameters. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 27:1-27:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.ICALP.2023.27

Abstract

We investigate the parameterized complexity of Binary CSP parameterized by the vertex cover number and the treedepth of the constraint graph, as well as by a selection of related modulator-based parameters. The main findings are as follows:  
- Binary CSP parameterized by the vertex cover number is W[3]-complete. More generally, for every positive integer d, Binary CSP parameterized by the size of a modulator to a treedepth-d graph is W[2d+1]-complete. This provides a new family of natural problems that are complete for odd levels of the W-hierarchy. 
- We introduce a new complexity class XSLP, defined so that Binary CSP parameterized by treedepth is complete for this class. We provide two equivalent characterizations of XSLP: the first one relates XSLP to a model of an alternating Turing machine with certain restrictions on conondeterminism and space complexity, while the second one links XSLP to the problem of model-checking first-order logic with suitably restricted universal quantification. Interestingly, the proof of the machine characterization of XSLP uses the concept of universal trees, which are prominently featured in the recent work on parity games. 
- We describe a new complexity hierarchy sandwiched between the W-hierarchy and the A-hierarchy: For every odd t, we introduce a parameterized complexity class S[t] with W[t] ⊆ S[t] ⊆ A[t], defined using a parameter that interpolates between the vertex cover number and the treedepth.  We expect that many of the studied classes will be useful in the future for pinpointing the complexity of various structural parameterizations of graph problems.

Subject Classification

ACM Subject Classification
  • Theory of computation → W hierarchy
Keywords
  • Parameterized Complexity
  • Constraint Satisfaction Problems
  • Binary CSP
  • List Coloring
  • Vertex Cover
  • Treedepth
  • W-hierarchy

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Faisal N. Abu-Khzam, Henning Fernau, Benjamin Gras, Mathieu Liedloff, and Kevin Mann. Enumerating minimal connected dominating sets. In 30th Annual European Symposium on Algorithms, ESA 2022, volume 244 of Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1-1:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ESA.2022.1.
  2. Kunwarjit S. Bagga, Lowell W. Beineke, Wayne D. Goddard, Marc J. Lipman, and Raymond E. Pippert. A survey of integrity. Discrete Applied Mathematics, 37:13-28, 1992. URL: https://doi.org/10.1016/0166-218X(92)90122-Q.
  3. Aritra Banik, Ashwin Jacob, Vijay Kumar Paliwal, and Venkatesh Raman. Fixed-parameter tractability of (n - k) list coloring. Theory of Computing Systems, 64(7):1307-1316, 2020. URL: https://doi.org/10.1007/s00224-020-10014-9.
  4. Curtis A. Barefoot, Roger Entringer, and Henda Swart. Vulnerability in graphs - a comparative survey. Journal of Combinatorial Mathematics and Combinatorial Computing, 1(38):13-22, 1987. Google Scholar
  5. Thomas Bläsius, Tobias Friedrich, Julius Lischeid, Kitty Meeks, and Martin Schirneck. Efficiently enumerating hitting sets of hypergraphs arising in data profiling. Journal of Computer and System Sciences, 124:192-213, 2022. URL: https://doi.org/10.1016/j.jcss.2021.10.002.
  6. Thomas Bläsius, Tobias Friedrich, and Martin Schirneck. The complexity of dependency detection and discovery in relational databases. Theoretical Computer Science, 900:79-96, 2022. URL: https://doi.org/10.1016/j.tcs.2021.11.020.
  7. Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Problems hard for treewidth but easy for stable gonality. In 48th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2022, volume 13453 of Lecture Notes in Computer Science, pages 84-97. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-15914-5_7.
  8. Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. List Colouring Trees in Logarithmic Space. In Proceedings 30th Annual European Symposium on Algorithms, ESA 2022, volume 244 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1-24:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ESA.2022.24.
  9. Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Lars Jaffke, and Paloma T. Lima. XNLP-completeness for parameterized problems on graphs with a linear structure. In Proceedings 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, volume 249 of LIPIcs, pages 8:1-8:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.IPEC.2022.8.
  10. Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and Michał Pilipczuk. On the complexity of problems on tree-structured graphs. In 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, volume 249 of LIPIcs, pages 6:1-6:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.IPEC.2022.6.
  11. Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis. Parameterized problems complete for nondeterministic FPT time and logarithmic space. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, pages 193-204. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00027.
  12. Hans L. Bodlaender, Carla Groenland, and Michał Pilipczuk. Parameterized complexity of binary csp: Vertex cover, treedepth, and related parameters. CoRR, abs/2208.12543, 2022. URL: https://arxiv.org/abs/2208.12543.
  13. Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding parity games in quasi-polynomial time. SIAM J. Comput., 51(2):17-152, 2022. URL: https://doi.org/10.1137/17m1145288.
  14. Katrin Casel, Henning Fernau, Mehdi Khosravian Ghadikolaei, Jérôme Monnot, and Florian Sikora. On the complexity of solution extension of optimization problems. Theoretical Computer Science, 904:48-65, 2022. URL: https://doi.org/10.1016/j.tcs.2021.10.017.
  15. Jianer Chen and Fenghui Zhang. On product covering in 3-tier supply chain models: Natural complete problems for W[3] and W[4]. Theoretical Computer Science, 363(3):278-288, 2006. URL: https://doi.org/10.1016/j.tcs.2006.07.016.
  16. Jiehua Chen, Wojciech Czerwiński, Yann Disser, Andreas Emil Feldmann, Danny Hermelin, Wojciech Nadara, Marcin Pilipczuk, Michał Pilipczuk, Manuel Sorge, Bartlomiej Wróblewski, and Anna Zych-Pawlewicz. Efficient fully dynamic elimination forests with applications to detecting long paths and cycles. In 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 796-809. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.50.
  17. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  18. Wojciech Czerwiński, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdziński, Ranko Lazić, and Pawel Parys. Universal trees grow inside separating automata: Quasi-polynomial lower bounds for parity games. In Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 2333-2349. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.142.
  19. Wojciech Czerwiński, Wojciech Nadara, and Marcin Pilipczuk. Improved bounds for the excluded-minor approximation of treedepth. SIAM J. Discret. Math., 35(2):934-947, 2021. URL: https://doi.org/10.1137/19M128819X.
  20. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999. URL: https://doi.org/10.1007/978-1-4612-0515-9.
  21. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1.
  22. Zdenek Dvořák, Archontia C. Giannopoulou, and Dimitrios M. Thilikos. Forbidden graphs for tree-depth. Eur. J. Comb., 33(5):969-979, 2012. URL: https://doi.org/10.1016/j.ejc.2011.09.014.
  23. Pavel Dvořák, Eduard Eiben, Robert Ganian, Dušan Knop, and Sebastian Ordyniak. The complexity landscape of decompositional parameters for ILP: Programs with few global variables and constraints. Artificial Intelligence, 300:103561, 2021. URL: https://doi.org/10.1016/j.artint.2021.103561.
  24. Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Koutecký, Asaf Levin, and Shmuel Onn. An algorithmic theory of integer programming. CoRR, abs/1904.01361, 2019. URL: https://arxiv.org/abs/1904.01361.
  25. Michael Elberfeld, Martin Grohe, and Till Tantau. Where first-order and monadic second-order logic coincide. ACM Trans. Comput. Log., 17(4):25, 2016. URL: https://doi.org/10.1145/2946799.
  26. Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity of parameterized problems: Classes and completeness. Algorithmica, 71(3):661-701, 2015. URL: https://doi.org/10.1007/s00453-014-9944-y.
  27. Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science, 410(1):53-61, 2009. URL: https://doi.org/10.1016/j.tcs.2008.09.065.
  28. Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and Saket Saurabh. Graph layout problems parameterized by vertex cover. In 19th International Symposium on Algorithms and Computation, ISAAC 2008, volume 5369 of Lecture Notes in Computer Science, pages 294-305. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-92182-0_28.
  29. Jirí Fiala, Petr A. Golovach, and Jan Kratochvíl. Parameterized complexity of coloring problems: Treewidth versus vertex cover. Theoretical Computer Science, 412(23):2513-2523, 2011. URL: https://doi.org/10.1016/j.tcs.2010.10.043.
  30. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006. URL: https://doi.org/10.1007/3-540-29953-X.
  31. Fedor V. Fomin, Bart M. P. Jansen, and Michał Pilipczuk. Preprocessing subgraph and minor problems: When does a small vertex cover help? Journal of Computer and System Sciences, 80(2):468-495, 2014. URL: https://doi.org/10.1016/j.jcss.2013.09.004.
  32. Eugene C. Freuder. Complexity of K-tree structured Constraint Satisfaction Problems. In 8th National Conference on Artificial Intelligence, AAAI-90, pages 4-9. AAAI Press / The MIT Press, 1990. URL: http://www.aaai.org/Library/AAAI/1990/aaai90-001.php.
  33. Martin Fürer and Huiwen Yu. Space saving by dynamic algebraization. In 9th International Computer Science Symposium in Russia, CSR 2014, volume 8476 of Lecture Notes in Computer Science, pages 375-388. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-06686-8_29.
  34. Robert Ganian. Improving vertex cover as a graph parameter. Discrete Mathematics and Theoretical Computer Science, 17(2):77-100, 2015. URL: https://doi.org/10.46298/dmtcs.2136.
  35. Gregory Z. Gutin, Diptapriyo Majumdar, Sebastian Ordyniak, and Magnus Wahlström. Parameterized pre-coloring extension and list coloring problems. SIAM Journal on Discrete Mathematics, 35(1):575-596, 2021. URL: https://doi.org/10.1137/20M1323369.
  36. Miika Hannula, Bor-Kuan Song, and Sebastian Link. An algorithm for the discovery of independence from data. arXiv, abs/2101.02502, 2021. URL: https://arxiv.org/abs/2101.02502.
  37. Falko Hegerfeld and Stefan Kratsch. Solving connectivity problems parameterized by treedepth in single-exponential time and polynomial space. In 37th International Symposium on Theoretical Aspects of Computer Science, STACS 2020, volume 154 of LIPIcs, pages 29:1-29:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.29.
  38. Marcin Jurdziński and Ranko Lazić. Succinct progress measures for solving parity games. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pages 1-9. IEEE Computer Society, 2017. URL: https://doi.org/10.1109/LICS.2017.8005092.
  39. Ken-ichi Kawarabayashi and Benjamin Rossman. A polynomial excluded-minor approximation of treedepth. In 2018 Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pages 234-246. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.17.
  40. Deepanshu Kush and Benjamin Rossman. Tree-depth and the formula complexity of subgraph isomorphism. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, pages 31-42. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00012.
  41. Wojciech Nadara, Michał Pilipczuk, and Marcin Smulewicz. Computing treedepth in polynomial space and linear FPT time. In 30th Annual European Symposium on Algorithms, ESA 2022, volume 244 of LIPIcs, pages 79:1-79:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ESA.2022.79.
  42. Jesper Nederlof, Michał Pilipczuk, Céline M. F. Swennenhuis, and Karol Węgrzycki. Hamiltonian Cycle parameterized by treedepth in single exponential time and polynomial space. In 46th International Workshop on Graph-Theoretic Concepts in Computer Science, volume 12301 of Lecture Notes in Computer Science, pages 27-39. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-60440-0_3.
  43. Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-27875-4.
  44. Christos H. Papadimitriou and Mihalis Yannakakis. On the complexity of database queries. Journal of Computer and System Sciences, 58(3):407-427, 1999. URL: https://doi.org/10.1006/jcss.1999.1626.
  45. Michał Pilipczuk and Sebastian Siebertz. Polynomial bounds for centered colorings on proper minor-closed graph classes. J. Comb. Theory, Ser. B, 151:111-147, 2021. URL: https://doi.org/10.1016/j.jctb.2021.06.002.
  46. Michał Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on structural decompositions of graphs. ACM Trans. Comput. Theory, 9(4):18:1-18:36, 2018. URL: https://doi.org/10.1145/3154856.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail