The Identity Problem in ℤ ≀ ℤ Is Decidable

Author Ruiwen Dong



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2023.124.pdf
  • Filesize: 0.86 MB
  • 20 pages

Document Identifiers

Author Details

Ruiwen Dong
  • Department of Computer Science, University of Oxford, UK

Acknowledgements

The author would like to thank Markus Schweighofer and David Sawall for useful discussions.

Cite As Get BibTex

Ruiwen Dong. The Identity Problem in ℤ ≀ ℤ Is Decidable. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 124:1-124:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.ICALP.2023.124

Abstract

We consider semigroup algorithmic problems in the wreath product ℤ ≀ ℤ. Our paper focuses on two decision problems introduced by Choffrut and Karhumäki (2005): the Identity Problem (does a semigroup contain the neutral element?) and the Group Problem (is a semigroup a group?) for finitely generated sub-semigroups of ℤ ≀ ℤ. We show that both problems are decidable. Our result complements the undecidability of the Semigroup Membership Problem (does a semigroup contain a given element?) in ℤ ≀ ℤ shown by Lohrey, Steinberg and Zetzsche (ICALP 2013), and contributes an important step towards solving semigroup algorithmic problems in general metabelian groups.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Symbolic and algebraic manipulation
Keywords
  • wreath product
  • algorithmic group theory
  • identity problem
  • polynomial semiring
  • positive coefficients

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Erwin H. Bareiss. Sylvester’s identity and multistep integer-preserving gaussian elimination. Mathematics of computation, 22(103):565-578, 1968. Google Scholar
  2. Gilbert Baumslag, Frank B. Cannonito, and Derek J. S. Robinson. The algorithmic theory of finitely generated metabelian groups. Transactions of the American Mathematical Society, 344(2):629-648, 1994. Google Scholar
  3. Paul C. Bell, Mika Hirvensalo, and Igor Potapov. The Identity Problem for matrix semigroups in SL₂(ℤ) is NP-complete. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 187-206. SIAM, 2017. Google Scholar
  4. Paul C. Bell and Igor Potapov. On the undecidability of the identity correspondence problem and its applications for word and matrix semigroups. International Journal of Foundations of Computer Science, 21(06):963-978, 2010. Google Scholar
  5. Vincent D. Blondel, Emmanuel Jeandel, Pascal Koiran, and Natacha Portier. Decidable and undecidable problems about quantum automata. SIAM Journal on Computing, 34(6):1464-1473, 2005. Google Scholar
  6. J. A. Bondy and U. S. R. Murty. Graph theory with applications, volume 290. Macmillan London, 1976. Google Scholar
  7. Michaël Cadilhac, Dmitry Chistikov, and Georg Zetzsche. Rational subsets of baumslag-solitar groups. In 47th International Colloquium on Automata, Languages, and Programming, ICALP, volume 168 of LIPIcs, pages 116:1-116:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. Google Scholar
  8. Olivier Chapuis. ∀-free metabelian groups. The Journal of Symbolic Logic, 62(1):159-174, 1997. Google Scholar
  9. Christian Choffrut and Juhani Karhumäki. Some decision problems on integer matrices. RAIRO-Theoretical Informatics and Applications-Informatique Théorique et Applications, 39(1):125-131, 2005. Google Scholar
  10. Valerio De Angelis and Selim Tuncel. Handelman’s theorem on polynomials with positive multiples. Codes, systems, and graphical models (Minneapolis, MN, 1999), pages 439-445, 2001. Google Scholar
  11. Harm Derksen, Emmanuel Jeandel, and Pascal Koiran. Quantum automata and algebraic groups. Journal of Symbolic Computation, 39(3-4):357-371, 2005. Google Scholar
  12. Ruiwen Dong. Solving homogeneous linear equations over polynomial semirings. arXiv preprint, 2022. To appear in STACS 2023. URL: https://arxiv.org/abs/2209.13347.
  13. Manfred Einsiedler, Robert Mouat, and Selim Tuncel. When does a submodule of (ℝ[x₁, …, x_k]) ⁿ contain a positive element? Monatshefte für Mathematik, 140(4):267-283, 2003. Google Scholar
  14. Moses Ganardi, Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack problems for wreath products. In 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 32:1-32:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. Google Scholar
  15. David Handelman. Positive polynomials and product type actions of compact groups, volume 320. American Mathematical Soc., 1985. Google Scholar
  16. Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. Polynomial invariants for affine programs. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages 530-539, 2018. Google Scholar
  17. Olga Kharlampovich, Laura López, and Alexei Myasnikov. The diophantine problem in some metabelian groups. Mathematics of Computation, 89(325):2507-2519, 2020. Google Scholar
  18. Olga G. Kharlampovich. A finitely presented solvable group with unsolvable word problem. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 45(4):852-873, 1981. Google Scholar
  19. Olga G. Kharlampovich and Mark V. Sapir. Algorithmic problems in varieties. International Journal of Algebra and Computation, 5(04n05):379-602, 1995. Google Scholar
  20. Kenneth Krohn and John Rhodes. Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines. Transactions of the American Mathematical Society, 116:450-464, 1965. Google Scholar
  21. Markus Lohrey. Subgroup membership in GL(2, Z). In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021), volume 187 of LIPIcs, pages 51:1-51:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. Google Scholar
  22. Markus Lohrey, Benjamin Steinberg, and Georg Zetzsche. Rational subsets and submonoids of wreath products. Information and Computation, 243:191-204, 2015. Google Scholar
  23. Wilhelm Magnus. On a theorem of Marshall Hall. Annals of Mathematics, pages 764-768, 1939. Google Scholar
  24. A. Markov. On certain insoluble problems concerning matrices. Doklady Akad. Nauk SSSR, 57(6):539-542, 1947. Google Scholar
  25. K. A. Mikhailova. The occurrence problem for direct products of groups. Matematicheskii Sbornik, 112(2):241-251, 1966. Google Scholar
  26. Vitalii Anatol'evich Roman'kov. Equations in free metabelian groups. Siberian Mathematical Journal, 20(3):469-471, 1979. Google Scholar
  27. N. S. Romanovskii. Some algorithmic problems for solvable groups. Algebra and Logic, 13(1):13-16, 1974. Google Scholar
  28. Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. second ed., rev., Univ. of California Press, Berkeley, 1951. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail