Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

Authors Jan Dreier , Nikolas Mählmann , Sebastian Siebertz , Szymon Toruńczyk



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2023.125.pdf
  • Filesize: 0.99 MB
  • 18 pages

Document Identifiers

Author Details

Jan Dreier
  • TU Wien, Austria
Nikolas Mählmann
  • Universität Bremen, Germany
Sebastian Siebertz
  • Universität Bremen, Germany
Szymon Toruńczyk
  • University of Warsaw, Poland

Acknowledgements

We thank Édouard Bonnet, Jakub Gajarský, Stephan Kreutzer, Amer E. Mouawad and Alexandre Vigny for their valuable contributions to this paper. In particular, we thank Jakub Gajarský and Stephan Kreutzer for suggesting the notion of flip-flatness and providing a proof for the cases r = 1,2.

Cite As Get BibTex

Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 125:1-125:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.ICALP.2023.125

Abstract

Monadically stable and monadically NIP classes of structures were initially studied in the context of model theory and defined in logical terms. They have recently attracted attention in the area of structural graph theory, as they generalize notions such as nowhere denseness, bounded cliquewidth, and bounded twinwidth.
Our main result is the - to the best of our knowledge first - purely combinatorial characterization of monadically stable classes of graphs, in terms of a property dubbed flip-flatness. A class C of graphs is flip-flat if for every fixed radius r, every sufficiently large set of vertices of a graph G ∈ C contains a large subset of vertices with mutual distance larger than r, where the distance is measured in some graph G' that can be obtained from G by performing a bounded number of flips that swap edges and non-edges within a subset of vertices. Flip-flatness generalizes the notion of uniform quasi-wideness, which characterizes nowhere dense classes and had a key impact on the combinatorial and algorithmic treatment of nowhere dense classes. To obtain this result, we develop tools that also apply to the more general monadically NIP classes, based on the notion of indiscernible sequences from model theory. We show that in monadically stable and monadically NIP classes indiscernible sequences impose a strong combinatorial structure on their definable neighborhoods. All our proofs are constructive and yield efficient algorithms.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Theory of computation → Finite Model Theory
Keywords
  • stability
  • NIP
  • combinatorial characterization
  • first-order model checking

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Algorithms, Logic and Structure Workshop in Warwick - Open Problem Session. URL: https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf, 2016. [Online; accessed 23-Jan-2023].
  2. Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion of model theory. European Journal of Combinatorics, 36:322-330, 2014. Google Scholar
  3. John T Baldwin and Saharon Shelah. Second-order quantifiers and the complexity of theories. Notre Dame Journal of Formal Logic, 26(3):229-303, 1985. Google Scholar
  4. Achim Blumensath. Simple monadic theories and indiscernibles. Mathematical Logic Quarterly, 57(1):65-86, 2011. URL: https://doi.org/10.1002/malq.200910121.
  5. Édouard Bonnet, Jan Dreier, Jakub Gajarský, Stephan Kreutzer, Nikolas Mählmann, Pierre Simon, and Szymon Torunczyk. Model checking on interpretations of classes of bounded local cliquewidth. In Christel Baier and Dana Fisman, editors, LICS '22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 54:1-54:13. ACM, 2022. URL: https://doi.org/10.1145/3531130.3533367.
  6. Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Toruńczyk. Twin-width IV: Ordered graphs and matrices. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages 924-937, New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3519935.3520037.
  7. Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and Stéphan Thomassé. Twin-width viii: delineation and win-wins, 2022. URL: https://doi.org/10.48550/arXiv.2204.00722.
  8. Samuel Braunfeld and Michael Laskowski. Characterizations of monadic NIP. Transactions of the American Mathematical Society, Series B, 8(30):948-970, 2021. Google Scholar
  9. Bruno Courcelle and Sang-il Oum. Vertex-minors, monadic second-order logic, and a conjecture by seese. Journal of Combinatorial Theory, Series B, 97(1):91-126, 2007. URL: https://doi.org/10.1016/j.jctb.2006.04.003.
  10. Anuj Dawar. Homomorphism preservation on quasi-wide classes. Journal of Computer and System Sciences, 76(5):324-332, 2010. Google Scholar
  11. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  12. Guoli Ding, Bogdan Oporowski, James G. Oxley, and Dirk Vertigan. Unavoidable minors of large 3-connected binary matroids. J. Comb. Theory, Ser. B, 66(2):334-360, 1996. URL: https://doi.org/10.1006/jctb.1996.0026.
  13. Jan Dreier, Jakub Gajarský, Sandra Kiefer, Michał Pilipczuk, and Szymon Toruńczyk. Treelike decompositions for transductions of sparse graphs. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2022), New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3531130.3533349.
  14. Jan Dreier, Nikolas Mählmann, Amer E. Mouawad, Sebastian Siebertz, and Alexandre Vigny. Combinatorial and Algorithmic Aspects of Monadic Stability. In Sang Won Bae and Heejin Park, editors, 33rd International Symposium on Algorithms and Computation (ISAAC 2022), volume 248 of Leibniz International Proceedings in Informatics (LIPIcs), pages 11:1-11:17, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2022.11.
  15. Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indiscernibles and flatness in monadically stable and monadically nip classes. arXiv preprint, 2022. URL: https://arxiv.org/abs/2206.13765.
  16. Jan Dreier, Nikolas Mählmann, and Sebastian Siebertz. First-order model checking on structurally sparse graph classes, 2023. URL: https://doi.org/10.48550/arXiv.2302.03527.
  17. Andrzej Ehrenfeucht and Andrzej Mostowski. Models of axiomatic theories admitting automorphisms. Fundamenta mathematicae, 1(43):50-68, 1956. Google Scholar
  18. Haim Gaifman. On local and non-local properties. In Proceedings of the Herbrand Symposium, volume 107 of Stud. Logic Found. Math., pages 105-135. Elsevier, 1982. Google Scholar
  19. Jakub Gajarskỳ, Stephan Kreutzer, Jaroslav Nešetřil, Patrice Ossona De Mendez, Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. First-order interpretations of bounded expansion classes. ACM Transactions on Computational Logic (TOCL), 21(4):1-41, 2020. Google Scholar
  20. Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk. Flipper games for monadically stable graph classes. arXiv preprint, 2023. URL: https://arxiv.org/abs/2301.13735.
  21. Jakub Gajarský, Michał Pilipczuk, and Szymon Toruńczyk. Stable graphs of bounded twin-width. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '22, New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3531130.3533356.
  22. Colin Geniet and Stéphan Thomassé. First order logic and twin-width in tournaments and dense oriented graphs, 2022. URL: https://doi.org/10.48550/arXiv.2207.07683.
  23. Martin Grohe. Logic, graphs, and algorithms. Logic and Automata, 2:357-422, 2008. Google Scholar
  24. Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of nowhere dense graphs. Journal of the ACM (JACM), 64(3):1-32, 2017. Google Scholar
  25. Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997. Google Scholar
  26. Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Polynomial kernels and wideness properties of nowhere dense graph classes. ACM Transactions on Algorithms (TALG), 15(2):1-19, 2018. Google Scholar
  27. O-joung Kwon, Michał Pilipczuk, and Sebastian Siebertz. On low rank-width colorings. European Journal of Combinatorics, 83:103002, 2020. Google Scholar
  28. M. Malliaris and S. Shelah. Regularity lemmas for stable graphs. Transactions of the American Mathematical Society, 366(3):1551-1585, 2014. URL: http://www.jstor.org/stable/23813167.
  29. Jaroslav Nešetřil and Patrice Ossona De Mendez. On nowhere dense graphs. European Journal of Combinatorics, 32(4):600-617, 2011. Google Scholar
  30. Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. Rankwidth meets stability. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2014-2033. SIAM, 2021. Google Scholar
  31. Jaroslav Nešetřil, Patrice Ossona de Mendez, and Sebastian Siebertz. Structural properties of the first-order transduction quasiorder. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022. Google Scholar
  32. Jaroslav Nešetřil, Roman Rabinovich, Patrice Ossona de Mendez, and Sebastian Siebertz. Linear rankwidth meets stability. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1180-1199. SIAM, 2020. Google Scholar
  33. Bruno Poizat. A Course in Model Theory: An Introduction to Contemporary Mathematical Logic. Springer New York, 2000. Google Scholar
  34. Saharon Shelah. Monadic logic: Hanf numbers. In Around classification theory of models, pages 203-223. Springer, 1986. Google Scholar
  35. Pierre Simon and Szymon Toruńczyk. Ordered graphs of bounded twin-width, 2021. URL: https://doi.org/10.48550/arXiv.2102.06881.
  36. Katrin Tent and Martin Ziegler. A course in model theory, volume 40 of Lecture Notes in Logic. Cambridge University Press, 2012. Google Scholar
  37. Symon Toruńczyk. Flip-width: Cops and robber on dense graphs, 2023. URL: https://arxiv.org/abs/2302.00352.
  38. Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Toruńczyk. Twin-width iv: ordered graphs and matrices, 2021. URL: https://arxiv.org/abs/2102.03117.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail