LIPIcs.ECOOP.2023.31.pdf
- Filesize: 0.99 MB
- 28 pages
The λ_Dat calculus brings together the power of functional and declarative logic programming in one language. In λ_Dat, Datalog constraints are first-class values that can be constructed, passed around as arguments, returned, composed with other constraints, and solved. A significant part of the expressive power of Datalog comes from the use of negation. Stratified negation is a particularly simple and practical form of negation accessible to ordinary programmers. Stratification requires that Datalog programs must not use recursion through negation. For a Datalog program, this requirement is straightforward to check, but for a λ_Dat program, it is not so simple: A λ_Dat program constructs, composes, and solves Datalog programs at runtime. Hence stratification cannot readily be determined at compile-time. In this paper, we explore the design space of stratification for λ_Dat. We investigate strategies to ensure, at compile-time, that programs constructed at runtime are guaranteed to be stratified, and we argue that previous design choices in the Flix programming language have been suboptimal.
Feedback for Dagstuhl Publishing