LIPIcs.CCC.2023.13.pdf
- Filesize: 0.68 MB
- 10 pages
We give several new lower bounds on size of homogeneous non-commutative circuits. We present an explicit homogeneous bivariate polynomial of degree d which requires homogeneous non-commutative circuit of size Ω(d/log d). For an n-variate polynomial with n > 1, the result can be improved to Ω(nd), if d ≤ n, or Ω(nd (log n)/(log d)), if d ≥ n. Under the same assumptions, we also give a quadratic lower bound for the ordered version of the central symmetric polynomial.
Feedback for Dagstuhl Publishing