LIPIcs.ITP.2023.30.pdf
- Filesize: 1.01 MB
- 20 pages
Higher-order rewriting is a framework in which one can write higher-order programs and study their properties. One such property is termination: the situation that for all inputs, the program eventually halts its execution and produces an output. Several tools have been developed to check whether higher-order rewriting systems are terminating. However, developing such tools is difficult and can be error-prone. In this paper, we present a way of certifying termination proofs of higher-order term rewriting systems. We formalize a specific method that is used to prove termination, namely the polynomial interpretation method. In addition, we give a program that processes proof traces containing a high-level description of a termination proof into a formal Coq proof script that can be checked by Coq. We demonstrate the usability of this approach by certifying higher-order polynomial interpretation proofs produced by Wanda, a termination analysis tool for higher-order rewriting.
Feedback for Dagstuhl Publishing