LIPIcs.MFCS.2023.22.pdf
- Filesize: 0.79 MB
- 14 pages
In this paper, we study the computational complexity of the Maximum Cut problem parameterized above guarantee. Our main result provides a linear kernel for the Maximum Cut problem in connected graphs parameterized above the spanning tree. This kernel significantly improves the previous O(k⁵) kernel given by Madathil, Saurabh, and Zehavi [ToCS 2020]. We also provide subexponential running time algorithms for this problem in special classes of graphs: chordal, split, and co-bipartite. We complete the picture by lower bounds under the assumption of the ETH. Moreover, we initiate a study of the Maximum Cut problem above 2/3|E| lower bound in tripartite graphs.
Feedback for Dagstuhl Publishing