Approximating the Value of Energy-Parity Objectives in Simple Stochastic Games

Authors Mohan Dantam, Richard Mayr



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2023.38.pdf
  • Filesize: 0.76 MB
  • 15 pages

Document Identifiers

Author Details

Mohan Dantam
  • School of Informatics, University of Edinburgh, UK
Richard Mayr
  • School of Informatics, University of Edinburgh, UK

Cite As Get BibTex

Mohan Dantam and Richard Mayr. Approximating the Value of Energy-Parity Objectives in Simple Stochastic Games. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 38:1-38:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.MFCS.2023.38

Abstract

We consider simple stochastic games G with energy-parity objectives, a combination of quantitative rewards with a qualitative parity condition. The Maximizer tries to avoid running out of energy while simultaneously satisfying a parity condition.
We present an algorithm to approximate the value of a given configuration in 2-NEXPTIME. Moreover, ε-optimal strategies for either player require at most O(2-EXP(|G|)⋅log(1/ε)) memory modes.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Stochastic games
Keywords
  • Energy-Parity Games
  • Simple Stochastic Games
  • Parity
  • Energy

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Rajeev Alur, Thomas A Henzinger, and Orna Kupferman. Alternating-time temporal logic. Journal of the ACM, 49(5):672-713, 2002. Google Scholar
  2. Patrick Billingsley. Probability and measure. John Wiley & Sons, 2008. Google Scholar
  3. T. Brázdil, V. Brožek, K. Etessami, and A. Kučera. Approximating the Termination Value of One-Counter MDPs and Stochastic Games. Information and Computation, 222:121-138, 2013. URL: http://arxiv.org/abs/1104.4978.
  4. T. Brázdil, A. Kučera, and P. Novotný. Optimizing the expected mean payoff in energy Markov decision processes. In International Symposium on Automated Technology for Verification and Analysis (ATVA), volume 9938 of LNCS, pages 32-49, 2016. Google Scholar
  5. Tomás Brázdil, Václav Brozek, and Kousha Etessami. One-Counter Stochastic Games. In Kamal Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010), volume 8 of Leibniz International Proceedings in Informatics (LIPIcs), pages 108-119, Dagstuhl, Germany, 2010. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. Full version at https://arxiv.org/abs/1009.5636. URL: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.108.
  6. Arindam Chakrabarti, Luca De Alfaro, Thomas A Henzinger, and Mariëlle Stoelinga. Resource interfaces. In International Workshop on Embedded Software, pages 117-133, 2003. Google Scholar
  7. Krishnendu Chatterjee and Laurent Doyen. Energy parity games. In International Colloquium on Automata, Languages and Programming (ICALP), volume 6199 of LNCS, pages 599-610, 2010. Google Scholar
  8. Krishnendu Chatterjee and Laurent Doyen. Energy and mean-payoff parity Markov decision processes. In International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 6907, pages 206-218, 2011. Google Scholar
  9. Krishnendu Chatterjee and Laurent Doyen. Games and Markov decision processes with mean-payoff parity and energy parity objectives. In Mathematical and Engineering Methods in Computer Science (MEMICS), volume 7119 of LNCS, pages 37-46. Springer, 2011. Google Scholar
  10. Krishnendu Chatterjee, Laurent Doyen, Hugo Gimbert, and Youssouf Oualhadj. Perfect-information stochastic mean-payoff parity games. In International Conference on Foundations of Software Science and Computational Structures (FoSSaCS), volume 8412 of LNCS, 2014. Google Scholar
  11. Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized parity games. In Helmut Seidl, editor, International Conference on Foundations of Software Science and Computational Structures (FoSSaCS), volume 4423 of LNCS, pages 153-167. Springer, 2007. URL: http://dx.doi.org/10.1007/978-3-540-71389-0_12.
  12. Krishnendu Chatterjee, Marcin Jurdziński, and Thomas A. Henzinger. Simple stochastic parity games. In Computer Science Logic (CSL), volume 2803 of LNCS, pages 100-113. Springer, 2003. Google Scholar
  13. Krishnendu Chatterjee, Marcin Jurdziński, and Thomas A. Henzinger. Quantitative stochastic parity games. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 121-130. SIAM, 2004. Google Scholar
  14. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, December 1999. Google Scholar
  15. Anne Condon. The complexity of stochastic games. Information and Computation, 96(2):203-224, 1992. URL: http://dx.doi.org/10.1016/0890-5401(92)90048-K.
  16. Laure Daviaud, Martin Jurdziński, and Ranko Lazić. A pseudo-quasi-polynomial algorithm for mean-payoff parity games. In Logic in Computer Science (LICS), pages 325-334, 2018. Google Scholar
  17. Luca De Alfaro and Thomas A Henzinger. Interface automata. ACM SIGSOFT Software Engineering Notes, 26(5):109-120, 2001. Google Scholar
  18. David L. Dill. Trace theory for automatic hierarchical verification of speed-independent circuits, volume 24. MIT press Cambridge, 1989. Google Scholar
  19. Graham Everest, Alfred Jacobus van der Poorten, Igor Shparlinski, and Thomas Ward. Recurrence sequences. ACM, 2003. Google Scholar
  20. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997. Google Scholar
  21. Dean Gillette. Stochastic games with zero stop probabilities. Contributions to the Theory of Games, 3:179-187, 1957. Google Scholar
  22. Hugo Gimbert and Florian Horn. Solving simple stochastic tail games. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 847-862, 2010. URL: http://epubs.siam.org/doi/abs/10.1137/1.9781611973075.69.
  23. Hugo Gimbert and Edon Kelmendi. Submixing and shift-invariant stochastic games. working paper or preprint, 2022. URL: http://arxiv.org/abs/1401.6575.
  24. Hugo Gimbert, Youssouf Oualhadj, and Soumya Paul. Computing optimal strategies for Markov decision processes with parity and positive-average conditions. working paper or preprint, 2011. URL: https://hal.science/hal-00559173/en/.
  25. Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Information Processing Letters, 68(3):119-124, 1998. Google Scholar
  26. A. Maitra and W. Sudderth. Stochastic games with Borel payoffs. In Stochastic Games and Applications, pages 367-373. Kluwer, Dordrecht, 2003. Google Scholar
  27. Donald A. Martin. The determinacy of Blackwell games. Journal of Symbolic Logic, 63(4):1565-1581, 1998. Google Scholar
  28. Richard Mayr, Sven Schewe, Patrick Totzke, and Dominik Wojtczak. MDPs with Energy-Parity Objectives. In Logic in Computer Science (LICS). IEEE, 2017. URL: http://arxiv.org/abs/1701.02546.
  29. Richard Mayr, Sven Schewe, Patrick Totzke, and Dominik Wojtczak. Simple stochastic games with almost-sure energy-parity objectives are in NP and coNP. In Proc. of Fossacs, volume 12650 of LNCS, 2021. Extended version on arXiv. URL: http://arxiv.org/abs/2101.06989.
  30. Joël Ouaknine and James Worrell. On linear recurrence sequences and loop termination. ACM SIGLOG News, 2(2):4-13, 2015. Google Scholar
  31. Jakob Piribauer. On non-classical stochastic shortest path problems. PhD thesis, Technische Universität Dresden, Germany, 2021. URL: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-762812.
  32. Jakob Piribauer and Christel Baier. On Skolem-Hardness and Saturation Points in Markov Decision Processes. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, Proc. of ICALP, volume 168 of LIPIcs, pages 138:1-138:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.138.
  33. Jakob Piribauer and Christel Baier. Positivity-hardness results on Markov decision processes. working paper or preprint, 2023. URL: http://arxiv.org/abs/2302.13675.
  34. Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Annual Symposium on Principles of Programming Languages (POPL), pages 179-190, 1989. Google Scholar
  35. Peter J. Ramadge and W. Murray Wonham. Supervisory control of a class of discrete event processes. SIAM journal on control and optimization, 25(1):206-230, 1987. Google Scholar
  36. Lloyd S. Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):1095-1100, 1953. Google Scholar
  37. W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science, 200(1-2):135-183, 1998. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail