Upward Translation of Optimal and P-Optimal Proof Systems in the Boolean Hierarchy over NP

Authors Fabian Egidy , Christian Glaßer, Martin Herold



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2023.44.pdf
  • Filesize: 0.76 MB
  • 15 pages

Document Identifiers

Author Details

Fabian Egidy
  • Julius-Maximilians-Universität Würzburg, Germany
Christian Glaßer
  • Julius-Maximilians-Universität Würzburg, Germany
Martin Herold
  • Max-Planck-Institut für Informatik, Saarbrücken, Germany

Cite As Get BibTex

Fabian Egidy, Christian Glaßer, and Martin Herold. Upward Translation of Optimal and P-Optimal Proof Systems in the Boolean Hierarchy over NP. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 44:1-44:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.MFCS.2023.44

Abstract

We study the existence of optimal and p-optimal proof systems for classes in the Boolean hierarchy over NP. Our main results concern DP, i.e., the second level of this hierarchy:  
- If all sets in DP have p-optimal proof systems, then all sets in coDP have p-optimal proof systems. 
- The analogous implication for optimal proof systems fails relative to an oracle.  As a consequence, we clarify such implications for all classes 𝒞 and 𝒟 in the Boolean hierarchy over NP: either we can prove the implication or show that it fails relative to an oracle.
Furthermore, we show that the sets SAT and TAUT have p-optimal proof systems, if and only if all sets in the Boolean hierarchy over NP have p-optimal proof systems which is a new characterization of a conjecture studied by Pudlák.

Subject Classification

ACM Subject Classification
  • Theory of computation → Proof complexity
  • Theory of computation → Oracles and decision trees
Keywords
  • Computational Complexity
  • Boolean Hierarchy
  • Proof Complexity
  • Proof Systems
  • Oracle Construction

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. T. P. Baker, J. Gill, and R. Solovay. Relativizations of the P =? NP question. SIAM Journal on Computing, 4(4):431-442, 1975. URL: https://doi.org/10.1137/0204037.
  2. Richard Beigel. Bounded queries to sat and the boolean hierarchy. Theoretical Computer Science, 84(2):199-223, 1991. URL: https://doi.org/10.1016/0304-3975(91)90160-4.
  3. O. Beyersdorff. Representable disjoint NP-pairs. In Proceedings 24th International Conference on Foundations of Software Technology and Theoretical Computer Science, volume 3328 of Lecture Notes in Computer Science, pages 122-134. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-30538-5_11.
  4. O. Beyersdorff. Disjoint NP-pairs from propositional proof systems. In Proceedings of Third International Conference on Theory and Applications of Models of Computation, volume 3959 of Lecture Notes in Computer Science, pages 236-247. Springer, 2006. URL: https://doi.org/10.18452/15520.
  5. O. Beyersdorff. Classes of representable disjoint NP-pairs. Theoretical Computer Science, 377(1-3):93-109, 2007. URL: https://doi.org/10.1016/j.tcs.2007.02.005.
  6. O. Beyersdorff. The deduction theorem for strong propositional proof systems. Theory of Computing Systems, 47(1):162-178, 2010. URL: https://doi.org/10.1007/s00224-008-9146-6.
  7. O. Beyersdorff, J. Köbler, and J. Messner. Nondeterministic functions and the existence of optimal proof systems. Theoretical Computer Science, 410(38-40):3839-3855, 2009. URL: https://doi.org/10.1016/j.tcs.2009.05.021.
  8. O. Beyersdorff and Z. Sadowski. Do there exist complete sets for promise classes? Mathematical Logic Quarterly, 57(6):535-550, 2011. URL: https://doi.org/10.1002/malq.201010021.
  9. S. R. Buss. Lectures on proof theory. Technical Report SOCS 96.1, McGill University, 1996. Google Scholar
  10. S. Cook and J. Krajíček. Consequences of the provability of NP ⊆ P/poly. Journal of Symbolic Logic, 72(4):1353-1371, 2007. URL: https://doi.org/10.2178/jsl/1203350791.
  11. S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic Logic, 44:36-50, 1979. URL: https://doi.org/10.2307/2273702.
  12. M. I. Dekhtyar. On the relativization of deterministic and nondeterministic complexity classes. In Mathematical Foundations of Computer Science, volume 45 of Lecture Notes in Computer Science, pages 255-259, Berlin, 1976. Springer-Verlag. Google Scholar
  13. C. Glaßer, A. L. Selman, and L. Zhang. Canonical disjoint NP-pairs of propositional proof systems. Theoretical Computer Science, 370:60-73, 2007. URL: https://doi.org/10.1007/11549345_35.
  14. C. Glaßer, A. L. Selman, and L. Zhang. The informational content of canonical disjoint NP-pairs. International Journal of Foundations of Computer Science, 20(3):501-522, 2009. URL: https://doi.org/10.1007/978-3-540-73545-8_31.
  15. E. A. Hirsch. Optimal acceptors and optimal proof system. In J. Kratochvíl, A. Li, J. Fiala, and P. Kolman, editors, Theory and Applications of Models of Computation, pages 28-39. Springer Berlin Heidelberg, 2010. Google Scholar
  16. E. A. Hirsch and D. Itsykson. On optimal heuristic randomized semidecision procedures, with application to proof complexity. In J. Marion and T. Schwentick, editors, 27th International Symposium on Theoretical Aspects of Computer Science, volume 5, pages 453-464. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010. URL: https://doi.org/10.4230/LIPIcs.STACS.2010.2475.
  17. E. Khaniki. New relations and separations of conjectures about incompleteness in the finite domain. The Journal of Symbolic Logic, 87(3):912-937, 2022. URL: https://doi.org/10.1017/jsl.2021.99.
  18. J. Köbler, J. Messner, and J. Torán. Optimal proof systems imply complete sets for promise classes. Information and Computation, 184(1):71-92, 2003. URL: https://doi.org/10.1016/S0890-5401(03)00058-0.
  19. J. Krajíček. Bounded Arithmetic, Propositional Logic and Complexity Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1995. URL: https://doi.org/10.1017/CBO9780511529948.
  20. J. Krajíček. Proof Complexity. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2019. URL: https://doi.org/10.1017/9781108242066.
  21. J. Krajíček and P. Pudlák. Propositional proof systems, the consistency of first order theories and the complexity of computations. Journal of Symbolic Logic, 54:1063-1079, 1989. URL: https://doi.org/10.2307/2274765.
  22. J. Messner. On the Simulation Order of Proof Systems. PhD thesis, Universität Ulm, 2000. Google Scholar
  23. C. H. Papadimitriou. On the complexity of integer programming. Journal of the ACM, 28(4):765-768, 1981. URL: https://doi.org/10.1145/322276.322287.
  24. P. Pudlák. On the lengths of proofs of consistency. In Collegium Logicum, pages 65-86. Springer Vienna, 1996. URL: https://doi.org/10.1016/S0049-237X(08)70462-2.
  25. P. Pudlák. Incompleteness in the finite domain. The Bulletin of Symbolic Logic, 23(4):405-441, 2017. Google Scholar
  26. P. Pudlák. The lengths of proofs. In Samuel R. Buss, editor, Handbook of Proof Theory, pages 547-637. Elsevier, Amsterdam, 1998. Google Scholar
  27. A. Razborov. On provably disjoint NP-pairs. BRICS Report Series, 36, 1994. URL: https://doi.org/10.7146/brics.v1i36.21607.
  28. Z. Sadowski. On an optimal propositional proof system and the structure of easy subsets of TAUT. Theoretical Computer Science, 288(1):181-193, 2002. URL: https://doi.org/10.1016/S0304-3975(01)00155-4.
  29. T.Pitassi and R. Santhanam. Effectively polynomial simulations. In Innovations in Computer Science, pages 370-381, 2010. Google Scholar
  30. K. W. Wagner. More complicated questions about maxima and minima, and some closures of NP. Theoretical Computer Science, 51(1):53-80, 1987. URL: https://doi.org/10.1016/0304-3975(87)90049-1.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail