Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors

Author Tim Seppelt



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2023.82.pdf
  • Filesize: 0.81 MB
  • 15 pages

Document Identifiers

Author Details

Tim Seppelt
  • RWTH Aachen University, Germany

Acknowledgements

I would like to thank David E. Roberson, Louis Härtel, Martin Grohe, Gaurav Rattan, and Christoph Standke for fruitful discussions.

Cite As Get BibTex

Tim Seppelt. Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 82:1-82:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.MFCS.2023.82

Abstract

Two graphs G and H are homomorphism indistinguishable over a class of graphs ℱ if for all graphs F ∈ ℱ the number of homomorphisms from F to G is equal to the number of homomorphisms from F to H. Many natural equivalence relations comparing graphs such as (quantum) isomorphism, spectral, and logical equivalences can be characterised as homomorphism indistinguishability relations over certain graph classes.
Abstracting from the wealth of such instances, we show in this paper that equivalences w.r.t. any self-complementarity logic admitting a characterisation as homomorphism indistinguishability relation can be characterised by homomorphism indistinguishability over a minor-closed graph class. Self-complementarity is a mild property satisfied by most well-studied logics. This result follows from a correspondence between closure properties of a graph class and preservation properties of its homomorphism indistinguishability relation.
Furthermore, we classify all graph classes which are in a sense finite (essentially profinite) and satisfy the maximality condition of being homomorphism distinguishing closed, i.e. adding any graph to the class strictly refines its homomorphism indistinguishability relation. Thereby, we answer various questions raised by Roberson (2022) on general properties of the homomorphism distinguishing closure.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorics
  • Mathematics of computing → Graph theory
Keywords
  • homomorphism indistinguishability
  • graph minor
  • logic

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Samson Abramsky, Tomáš Jakl, and Thomas Paine. Discrete density comonads and graph parameters. In Helle Hvid Hansen and Fabio Zanasi, editors, Coalgebraic Methods in Computer Science, pages 23-44. Springer International Publishing, 2022. URL: https://doi.org/10.1007/978-3-031-10736-8_2.
  2. Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and Süleyman Cenk Sahinalp. Biomolecular network motif counting and discovery by color coding. In Proceedings 16th International Conference on Intelligent Systems for Molecular Biology (ISMB), Toronto, Canada, July 19-23, 2008, pages 241-249, 2008. URL: https://doi.org/10.1093/bioinformatics/btn163.
  3. Albert Atserias, Phokion G. Kolaitis, and Wei-Lin Wu. On the Expressive Power of Homomorphism Counts. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-13, 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470543.
  4. Albert Atserias, Laura Mančinska, David E. Roberson, Robert Šámal, Simone Severini, and Antonios Varvitsiotis. Quantum and non-signalling graph isomorphisms. J. Comb. Theory, Ser. B, 136:289-328, 2019. URL: https://doi.org/10.1016/j.jctb.2018.11.002.
  5. Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and How to Use Them. In Andrei Krokhin and Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1-44. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017. URL: https://doi.org/10.4230/DFU.Vol7.15301.1.
  6. Paul Beaujean, Florian Sikora, and Florian Yger. Graph Homomorphism Features: Why Not Sample? In Michael Kamp, Irena Koprinska, Adrien Bibal, Tassadit Bouadi, Benoît Frénay, Luis Galárraga, José Oramas, Linara Adilova, Yamuna Krishnamurthy, Bo Kang, Christine Largeron, Jefrey Lijffijt, Tiphaine Viard, Pascal Welke, Massimiliano Ruocco, Erlend Aune, Claudio Gallicchio, Gregor Schiele, Franz Pernkopf, Michaela Blott, Holger Fröning, Günther Schindler, Riccardo Guidotti, Anna Monreale, Salvatore Rinzivillo, Przemyslaw Biecek, Eirini Ntoutsi, Mykola Pechenizkiy, Bodo Rosenhahn, Christopher Buckley, Daniela Cialfi, Pablo Lanillos, Maxwell Ramstead, Tim Verbelen, Pedro M. Ferreira, Giuseppina Andresini, Donato Malerba, Ibéria Medeiros, Philippe Fournier-Viger, M. Saqib Nawaz, Sebastian Ventura, Meng Sun, Min Zhou, Valerio Bitetta, Ilaria Bordino, Andrea Ferretti, Francesco Gullo, Giovanni Ponti, Lorenzo Severini, Rita Ribeiro, João Gama, Ricard Gavaldà, Lee Cooper, Naghmeh Ghazaleh, Jonas Richiardi, Damian Roqueiro, Diego Saldana Miranda, Konstantinos Sechidis, and Guilherme Graça, editors, Machine Learning and Principles and Practice of Knowledge Discovery in Databases, volume 1524, pages 216-222. Springer International Publishing, Cham, 2021. Series Title: Communications in Computer and Information Science. URL: https://doi.org/10.1007/978-3-030-93736-2_17.
  7. Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identification. Combinatorica, 12(4):389-410, December 1992. URL: https://doi.org/10.1007/BF01305232.
  8. Surajit Chaudhuri and Moshe Y. Vardi. Optimization of Real Conjunctive Queries. In Catriel Beeri, editor, Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 25-28, 1993, Washington, DC, USA, pages 59-70. ACM Press, 1993. URL: https://doi.org/10.1145/153850.153856.
  9. Yijia Chen, Jörg Flum, Mingjun Liu, and Zhiyang Xun. On algorithms based on finitely many homomorphism counts. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria, volume 241 of LIPIcs, pages 32:1-32:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.MFCS.2022.32.
  10. Bruno Courcelle. The monadic second order logic of graphs VI: on several representations of graphs by relational structures. Discrete Applied Mathematics, 54(2):117-149, 1994. URL: https://doi.org/10.1016/0166-218X(94)90019-1.
  11. Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms Are a Good Basis for Counting Small Subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 210-223. Association for Computing Machinery, 2017. event-place: Montreal, Canada. URL: https://doi.org/10.1145/3055399.3055502.
  12. Anuj Dawar, Tomáš Jakl, and Luca Reggio. Lovász-Type Theorems and Game Comonads. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-13. IEEE, 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470609.
  13. Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász Meets Weisfeiler and Leman. 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), pages 40:1-40:14, 2018. URL: https://doi.org/10.4230/LIPICS.ICALP.2018.40.
  14. Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 64(4):330-342, August 2010. URL: https://doi.org/10.1002/jgt.20461.
  15. H.-D. Ebbinghaus. Extended logics: The general framework. In J. Barwise and S. Feferman, editors, Model-Theoretic Logics, Perspectives in Logic, pages 25-76. Cambridge University Press, 2017. URL: https://doi.org/10.1017/9781316717158.005.
  16. Thomas Eiter, Georg Gottlob, and Thomas Schwentick. The Model Checking Problem for Prefix Classes of Second-Order Logic: A Survey. In Andreas Blass, Nachum Dershowitz, and Wolfgang Reisig, editors, Fields of Logic and Computation, volume 6300, pages 227-250. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. Series Title: Lecture Notes in Computer Science. URL: https://doi.org/10.1007/978-3-642-15025-8_13.
  17. Dennis Geller and Saul Stahl. The chromatic number and other functions of the lexicographic product. Journal of Combinatorial Theory, Series B, 19(1):87-95, 1975. URL: https://doi.org/10.1016/0095-8956(75)90076-3.
  18. Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory. Cambridge University Press, 2017. URL: https://doi.org/10.1017/9781139028868.
  19. Martin Grohe. Counting Bounded Tree Depth Homomorphisms. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '20, pages 507-520, New York, NY, USA, 2020. Association for Computing Machinery. URL: https://doi.org/10.1145/3373718.3394739.
  20. Martin Grohe. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors, Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, pages 1-16. ACM, 2020. URL: https://doi.org/10.1145/3375395.3387641.
  21. Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on graph kernels. Appl. Netw. Sci., 5(1):6, 2020. URL: https://doi.org/10.1007/s41109-019-0195-3.
  22. Jarosław Kwiecień, Jerzy Marcinkowski, and Piotr Ostropolski-Nalewaja. Determinacy of Real Conjunctive Queries. The Boolean Case. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 347-358. Association for Computing Machinery, 2022. URL: https://doi.org/10.1145/3517804.3524168.
  23. László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum Hungarica, 18(3):321-328, September 1967. URL: https://doi.org/10.1007/BF02280291.
  24. László Lovász. Large networks and graph limits. Number volume 60 in American Mathematical Society colloquium publications. American Mathematical Society, Providence, Rhode Island, 2012. URL: https://doi.org/10.1090/coll/060.
  25. Laura Mančinska and David E. Roberson. Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 661-672, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00067.
  26. Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. Network motifs: simple building blocks of complex networks. Science, 298(5594):824-827, 2002. URL: https://doi.org/10.1126/science.298.5594.824.
  27. Yoàv Montacute and Nihil Shah. The Pebble-Relation Comonad in Finite Model Theory. In Christel Baier and Dana Fisman, editors, LICS '22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2-5, 2022, pages 13:1-13:11. ACM, 2022. URL: https://doi.org/10.1145/3531130.3533335.
  28. Daniel Neuen. Homomorphism-Distinguishing Closedness for Graphs of Bounded Tree-Width, April 2023. URL: https://doi.org/10.48550/arXiv.2304.07011.
  29. Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms. Number 28 in Algorithms and combinatorics. Springer, Heidelberg ; New York, 2012. URL: https://doi.org/10.1007/978-3-642-27875-4.
  30. Hoang Nguyen and Takanori Maehara. Graph homomorphism convolution. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 7306-7316. PMLR, 2020. URL: http://proceedings.mlr.press/v119/nguyen20c.html.
  31. Gaurav Rattan and Tim Seppelt. Weisfeiler-Leman and Graph Spectra. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2268-2285, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch87.
  32. David E. Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree, June 2022. URL: https://doi.org/10.48550/arXiv.2206.10321.
  33. David E. Roberson and Tim Seppelt. Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 101:1-101:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.101.
  34. Neil Robertson and P.D Seymour. Graph minors. V. Excluding a planar graph. Journal of Combinatorial Theory, Series B, 41(1):92-114, August 1986. URL: https://doi.org/10.1016/0095-8956(86)90030-4.
  35. Tim Seppelt. Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors, 2023. URL: https://doi.org/10.48550/arXiv.2302.11290.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail