LIPIcs.ESA.2023.47.pdf
- Filesize: 1.06 MB
- 18 pages
For solving NP-hard problems there is often a huge gap between theoretical guarantees and observed running times on real-world instances. As a first step towards tackling this issue, we propose an approach to quantify the correlation between theoretical and observed running times. We use two NP-hard problems related to finding large "cliquish" subgraphs in a given graph as demonstration of this measure. More precisely, we focus on finding maximum s-clubs and s-plexes, i. e., graphs of diameter s and graphs where each vertex is adjacent to all but s vertices. Preprocessing based on Turing kernelization is a standard tool to tackle these problems, especially on sparse graphs. We provide a parameterized analysis for the Turing kernelization and demonstrate their usefulness in practice. Moreover, we demonstrate that our measure indeed captures the correlation between these new theoretical and the observed running times.
Feedback for Dagstuhl Publishing