LIPIcs.ESA.2023.56.pdf
- Filesize: 0.76 MB
- 17 pages
Boob et al. [Boob et al., 2020] described an iterative peeling algorithm called Greedy++ for the Densest Subgraph Problem (DSG) and conjectured that it converges to an optimum solution. Chekuri, Qaunrud and Torres [Chandra Chekuri et al., 2022] extended the algorithm to supermodular density problems (of which DSG is a special case) and proved that the resulting algorithm Super-Greedy++ (and hence also Greedy++) converges. In this paper we revisit the convergence proof and provide a different perspective. This is done via a connection to Fujishige’s quadratic program for finding a lexicographically optimal base in a (contra) polymatroid [Satoru Fujishige, 1980], and a noisy version of the Frank-Wolfe method from convex optimization [Frank and Wolfe, 1956; Jaggi, 2013]. This yields a simpler convergence proof, and also shows a stronger property that Super-Greedy++ converges to the optimal dense decomposition vector, answering a question raised in Harb et al. [Harb et al., 2022]. A second contribution of the paper is to understand Thorup’s work on ideal tree packing and greedy tree packing [Thorup, 2007; Thorup, 2008] via the Frank-Wolfe algorithm applied to find a lexicographically optimum base in the graphic matroid. This yields a simpler and transparent proof. The two results appear disparate but are unified via Fujishige’s result and convex optimization.
Feedback for Dagstuhl Publishing