Algorithms for Computing Maximum Cliques in Hyperbolic Random Graphs

Authors Eunjin Oh, Seunghyeok Oh



PDF
Thumbnail PDF

File

LIPIcs.ESA.2023.85.pdf
  • Filesize: 1.33 MB
  • 15 pages

Document Identifiers

Author Details

Eunjin Oh
  • Department of Computer Science, POSTECH, Pohang, South Korea
Seunghyeok Oh
  • Department of Computer Science, POSTECH, Pohang, South Korea

Cite As Get BibTex

Eunjin Oh and Seunghyeok Oh. Algorithms for Computing Maximum Cliques in Hyperbolic Random Graphs. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 85:1-85:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.ESA.2023.85

Abstract

In this paper, we study the maximum clique problem on hyperbolic random graphs. A hyperbolic random graph is a mathematical model for analyzing scale-free networks since it effectively explains the power-law degree distribution of scale-free networks. We propose a simple algorithm for finding a maximum clique in hyperbolic random graph. We first analyze the running time of our algorithm theoretically. We can compute a maximum clique on a hyperbolic random graph G in O(m + n^{4.5(1-α)}) expected time if a geometric representation is given or in O(m + n^{6(1-α)}) expected time if a geometric representation is not given, where n and m denote the numbers of vertices and edges of G, respectively, and α denotes a parameter controlling the power-law exponent of the degree distribution of G. Also, we implemented and evaluated our algorithm empirically. Our algorithm outperforms the previous algorithm [BFK18] practically and theoretically. Beyond the hyperbolic random graphs, we have experiment on real-world networks. For most of instances, we get large cliques close to the optimum solutions efficiently.

Subject Classification

ACM Subject Classification
  • Theory of computation → Random network models
Keywords
  • Maximum cliques
  • hyperbolic random graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. James Abello, Mauricio GC Resende, and Sandra Sudarsky. Massive quasi-clique detection. In LATIN 2002: Theoretical Informatics: 5th Latin American Symposium Cancun, Mexico, April 3-6, 2002 Proceedings 5, pages 598-612. Springer, 2002. Google Scholar
  2. Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs. Theoretical Computer Science, 237(1-2):123-134, 2000. Google Scholar
  3. James W Anderson. Hyperbolic geometry. Springer Science & Business Media, 2006. Google Scholar
  4. Thomas Bläsius, Cedric Freiberger, Tobias Friedrich, Maximilian Katzmann, Felix Montenegro-Retana, and Marianne Thieffry. Efficient shortest paths in scale-free networks with underlying hyperbolic geometry. ACM Transactions on Algorithms (TALG), 18(2):1-32, 2022. Google Scholar
  5. Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel Penschuck, and Christopher Weyand. Efficiently generating geometric inhomogeneous and hyperbolic random graphs. Network Science, 10(4):361-380, 2022. Google Scholar
  6. Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Hyperbolic random graphs: Separators and treewidth. In 24th Annual European Symposium on Algorithms (ESA 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016. Google Scholar
  7. Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Cliques in hyperbolic random graphs. Algorithmica, 80(8):2324-2344, 2018. Google Scholar
  8. Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. Efficient embedding of scale-free graphs in the hyperbolic plane. IEEE/ACM transactions on Networking, 26(2):920-933, 2018. Google Scholar
  9. Thomas Bläsius, Tobias Friedrich, and Christopher Weyand. Efficiently computing maximum flows in scale-free networks. In 29th Annual European Symposium on Algorithms (ESA 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021. Google Scholar
  10. Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. On the largest component of a hyperbolic model of complex networks. The Electronic Journal of Combinatorics, pages P3-24, 2015. Google Scholar
  11. Elisabetta Candellero and Nikolaos Fountoulakis. Clustering and the hyperbolic geometry of complex networks. In Algorithms and Models for the Web Graph: 11th International Workshop, WAW 2014, Beijing, China, December 17-18, 2014, Proceedings 11, pages 1-12. Springer, 2014. Google Scholar
  12. Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete Mathematics, 86(1):165-177, 1990. URL: https://doi.org/10.1016/0012-365X(90)90358-O.
  13. Jared Espenant, J. Mark Keil, and Debajyoti Mondal. Finding a maximum clique in a disk graph. In Erin W. Chambers and Joachim Gudmundsson, editors, 39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA, volume 258 of LIPIcs, pages 30:1-30:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.SoCG.2023.30.
  14. Tobias Friedrich and Anton Krohmer. On the diameter of hyperbolic random graphs. SIAM Journal on Discrete Mathematics, 32(2):1314-1334, 2018. Google Scholar
  15. Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs: degree sequence and clustering. In Automata, Languages, and Programming: 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II 39, pages 573-585. Springer, 2012. Google Scholar
  16. Marcos Kiwi and Dieter Mitsche. A bound for the diameter of random hyperbolic graphs. In 2015 Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pages 26-39. SIAM, 2014. Google Scholar
  17. Marcos Kiwi and Dieter Mitsche. On the second largest component of random hyperbolic graphs. SIAM Journal on Discrete Mathematics, 33(4):2200-2217, 2019. URL: https://doi.org/10.1137/18M121201X.
  18. Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
  19. Can Lu, Jeffrey Xu Yu, Hao Wei, and Yikai Zhang. Finding the maximum clique in massive graphs. Proceedings of the VLDB Endowment, 10(11):1538-1549, 2017. Google Scholar
  20. Fragkiskos Papadopoulos, Dmitri Krioukov, Marián Boguná, and Amin Vahdat. Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces. In 2010 Proceedings IEEE Infocom, pages 1-9. IEEE, 2010. Google Scholar
  21. Bharath Pattabiraman, Md Mostofa Ali Patwary, Assefaw H Gebremedhin, Wei-keng Liao, and Alok Choudhary. Fast algorithms for the maximum clique problem on massive sparse graphs. In Algorithms and Models for the Web Graph: 10th International Workshop, WAW 2013, Cambridge, MA, USA, December 14-15, 2013, Proceedings 10, pages 156-169. Springer, 2013. Google Scholar
  22. Vijay Raghavan and Jeremy Spinrad. Robust algorithms for restricted domains. Journal of algorithms, 48(1):160-172, 2003. Google Scholar
  23. John Michael Robson. Algorithms for maximum independent sets. Journal of Algorithms, 7(3):425-440, 1986. Google Scholar
  24. Ryan A Rossi, David F Gleich, Assefaw H Gebremedhin, and Md Mostofa Ali Patwary. Fast maximum clique algorithms for large graphs. In Proceedings of the 23rd International Conference on World Wide Web, pages 365-366, 2014. Google Scholar
  25. Tim Roughgarden. Beyond the worst-case analysis of algorithms. Cambridge University Press, 2021. Google Scholar
  26. Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. Generating random hyperbolic graphs in subquadratic time. In Algorithms and Computation: 26th International Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pages 467-478. Springer, 2015. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail