Complexity of Reconfiguration in Surface Chemical Reaction Networks

Authors Robert M. Alaniz, Josh Brunner, Michael Coulombe, Erik D. Demaine, Jenny Diomidova, Timothy Gomez, Elise Grizzell, Ryan Knobel, Jayson Lynch, Andrew Rodriguez, Robert Schweller, Tim Wylie



PDF
Thumbnail PDF

File

LIPIcs.DNA.29.10.pdf
  • Filesize: 0.78 MB
  • 18 pages

Document Identifiers

Author Details

Robert M. Alaniz
  • University of Texas Rio Grande Valley, Edinburg, TX, USA
Josh Brunner
  • Massachusetts Institute of Technology, Cambridge, MA, USA
Michael Coulombe
  • Massachusetts Institute of Technology, Cambridge, MA, USA
Erik D. Demaine
  • Massachusetts Institute of Technology, Cambridge, MA, USA
Jenny Diomidova
  • Massachusetts Institute of Technology, Cambridge, MA, USA
Timothy Gomez
  • Massachusetts Institute of Technology, Cambridge, MA, USA
Elise Grizzell
  • Massachusetts Institute of Technology, Cambridge, MA, USA
Ryan Knobel
  • Massachusetts Institute of Technology, Cambridge, MA, USA
Jayson Lynch
  • Massachusetts Institute of Technology, Cambridge, MA, USA
Andrew Rodriguez
  • University of Texas Rio Grande Valley, Edinburg, TX, USA
Robert Schweller
  • University of Texas Rio Grande Valley, Edinburg, TX, USA
Tim Wylie
  • University of Texas Rio Grande Valley, Edinburg, TX, USA

Cite As Get BibTex

Robert M. Alaniz, Josh Brunner, Michael Coulombe, Erik D. Demaine, Jenny Diomidova, Timothy Gomez, Elise Grizzell, Ryan Knobel, Jayson Lynch, Andrew Rodriguez, Robert Schweller, and Tim Wylie. Complexity of Reconfiguration in Surface Chemical Reaction Networks. In 29th International Conference on DNA Computing and Molecular Programming (DNA 29). Leibniz International Proceedings in Informatics (LIPIcs), Volume 276, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.DNA.29.10

Abstract

We analyze the computational complexity of basic reconfiguration problems for the recently introduced surface Chemical Reaction Networks (sCRNs), where ordered pairs of adjacent species nondeterministically transform into a different ordered pair of species according to a predefined set of allowed transition rules (chemical reactions). In particular, two questions that are fundamental to the simulation of sCRNs are whether a given configuration of molecules can ever transform into another given configuration, and whether a given cell can ever contain a given species, given a set of transition rules. We show that these problems can be solved in polynomial time, are NP-complete, or are PSPACE-complete in a variety of different settings, including when adjacent species just swap instead of arbitrary transformation (swap sCRNs), and when cells can change species a limited number of times (k-burnout). Most problems turn out to be at least NP-hard except with very few distinct species (2 or 3).

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Problems, reductions and completeness
Keywords
  • Chemical Reaction Networks
  • reconfiguration
  • hardness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Joshua Ani, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrickson, and Jayson Lynch. Traversability, reconfiguration, and reachability in the gadget framework. In WALCOM: Algorithms and Computation: 16th International Conference and Workshops, WALCOM 2022, Jember, Indonesia, March 24-26, 2022, Proceedings, pages 47-58. Springer, 2022. Google Scholar
  2. Tatiana Brailovskaya, Gokul Gowri, Sean Yu, and Erik Winfree. Reversible computation using swap reactions on a surface. In International Conference on DNA Computing and Molecular Programming, pages 174-196. Springer, 2019. Google Scholar
  3. David Caballero, Timothy Gomez, Robert Schweller, and Tim Wylie. Verification and computation in restricted tile automata. Natural Computing, pages 1-19, 2020. Google Scholar
  4. Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller, Andrew Winslow, and Tim Wylie. Freezing simulates non-freezing tile automata. In DNA Computing and Molecular Programming: 24th International Conference, DNA 24, Jinan, China, October 8-12, 2018, Proceedings 24, pages 155-172. Springer, 2018. Google Scholar
  5. Gourab Chatterjee, Neil Dalchau, Richard A. Muscat, Andrew Phillips, and Georg Seelig. A spatially localized architecture for fast and modular DNA computing. Nature nanotechnology, 12(9):920-927, 2017. Google Scholar
  6. Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with chemical reaction networks. Natural computing, 13:517-534, 2014. Google Scholar
  7. Samuel Clamons, Lulu Qian, and Erik Winfree. Programming and simulating chemical reaction networks on a surface. Journal of the Royal Society Interface, 17(166):20190790, 2020. Google Scholar
  8. Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of chemical reaction networks. In Algorithmic bioprocesses, pages 543-584. Springer, 2009. Google Scholar
  9. Frits Dannenberg, Marta Kwiatkowska, Chris Thachuk, and Andrew J Turberfield. DNA walker circuits: computational potential, design, and verification. Natural Computing, 14(2):195-211, 2015. Google Scholar
  10. Colin Defant and Noah Kravitz. Friends and strangers walking on graphs. Combinatorial Theory, 1, 2021. Google Scholar
  11. Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational complexity of motion planning of a robot through simple gadgets. In 9th International Conference on Fun with Algorithms (FUN 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. Google Scholar
  12. Erik D Demaine, Robert A Hearn, Dylan Hendrickson, and Jayson Lynch. Pspace-completeness of reversible deterministic systems. In Machines, Computations, and Universality: 9th International Conference, MCU 2022, Debrecen, Hungary, August 31-September 2, 2022, Proceedings, pages 91-108. Springer, 2022. Google Scholar
  13. Alberto Dennunzio, Enrico Formenti, Luca Manzoni, Giancarlo Mauri, and Antonio E Porreca. Computational complexity of finite asynchronous cellular automata. Theoretical Computer Science, 664:131-143, 2017. Google Scholar
  14. Eric Goles, Diego Maldonado, Pedro Montealegre, and Martín Ríos-Wilson. On the complexity of asynchronous freezing cellular automata. Information and Computation, 281:104764, 2021. Google Scholar
  15. Eric Goles, Nicolas Ollinger, and Guillaume Theyssier. Introducing freezing cellular automata. In Cellular Automata and Discrete Complex Systems, 21st International Workshop (AUTOMATA 2015), volume 24, pages 65-73, 2015. Google Scholar
  16. Gilad Goraly and Refael Hassin. Multi-color pebble motion on graphs. Algorithmica, 58:610-636, 2010. Google Scholar
  17. Robert A Hearn and Erik D Demaine. Games, puzzles, and computation. CRC Press, 2009. Google Scholar
  18. Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer and System Sciences, 3(2):147-195, 1969. URL: https://doi.org/10.1016/S0022-0000(69)80011-5.
  19. Aleksa Milojevic. Connectivity of old and new models of friends-and-strangers graphs. arXiv preprint arXiv:2210.03864, 2022. Google Scholar
  20. Kenichi Morita and Yoshikazu Yamaguchi. A universal reversible turing machine. In Machines, Computations, and Universality: 5th International Conference, MCU 2007, Orléans, France, September 10-13, 2007. Proceedings 5, pages 90-98. Springer, 2007. Google Scholar
  21. Richard A. Muscat, Karin Strauss, Luis Ceze, and Georg Seelig. DNA-based molecular architecture with spatially localized components. ACM SIGARCH Computer Architecture News, 41(3):177-188, 2013. Google Scholar
  22. Jennifer Padilla, Wenyan Liu, and Nadrian Seeman. Hierarchical self assembly of patterns from the robinson tilings: Dna tile design in an enhanced tile assembly model. Natural computing, 11:323-338, June 2012. URL: https://doi.org/10.1007/s11047-011-9268-7.
  23. Christos H Papadimitriou, Prabhakar Raghavan, Madhu Sudan, and Hisao Tamaki. Motion planning on a graph. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 511-520. IEEE, 1994. Google Scholar
  24. Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Rheinisch-Westfälischen Institutes für Instrumentelle Mathematik an der Universität Bonn, 1962. Google Scholar
  25. Lulu Qian and Erik Winfree. Parallel and scalable computation and spatial dynamics with DNA-based chemical reaction networks on a surface. In DNA Computing and Molecular Programming: 20th International Conference, DNA 20, Kyoto, Japan, September 22-26, 2014. Proceedings, volume 8727, page 114. Springer, 2014. Google Scholar
  26. David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with finite stochastic chemical reaction networks. natural computing, 7:615-633, 2008. Google Scholar
  27. David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences, 107(12):5393-5398, 2010. Google Scholar
  28. Guillaume Theyssier and Nicolas Ollinger. Freezing, bounded-change and convergent cellular automata. Discrete Mathematics & Theoretical Computer Science, 24, 2022. Google Scholar
  29. Anupama J. Thubagere, Wei Li, Robert F. Johnson, Zibo Chen, Shayan Doroudi, Yae Lim Lee, Gregory Izatt, Sarah Wittman, Niranjan Srinivas, Damien Woods, et al. A cargo-sorting DNA robot. Science, 357(6356):eaan6558, 2017. Google Scholar
  30. Damien Woods and Turlough Neary. The complexity of small universal turing machines: A survey. Theoretical Computer Science, 410(4-5):443-450, 2009. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail