LIPIcs.CP.2023.23.pdf
- Filesize: 1.5 MB
- 22 pages
Large neighborhood search (LNS) is an algorithmic framework that removes a part of a solution and performs search in the induced search space to find a better solution. While LNS shows strong performance in constraint programming, little work has combined LNS with state space search. We propose large neighborhood beam search (LNBS), a combination of LNS and state space search. Given a solution path, LNBS removes a partial path between two states and then performs beam search to find a better partial path. We apply LNBS to domain-independent dynamic programming (DIDP), a recently proposed generic framework for combinatorial optimization based on dynamic programming. We empirically show that LNBS finds better quality solutions than a state-of-the-art DIDP solver in five out of nine benchmark problem types with a total of 8570 problem instances. In particular, LNBS shows a significant improvement over the existing state-of-the-art DIDP solver in routing and scheduling problems.
Feedback for Dagstuhl Publishing