Treasure Hunt with Volatile Pheromones

Authors Evangelos Bampas , Joffroy Beauquier, Janna Burman, William Guy--Obé



PDF
Thumbnail PDF

File

LIPIcs.DISC.2023.8.pdf
  • Filesize: 0.95 MB
  • 21 pages

Document Identifiers

Author Details

Evangelos Bampas
  • Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400 Orsay, France
Joffroy Beauquier
  • Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400 Orsay, France
Janna Burman
  • Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400 Orsay, France
William Guy--Obé
  • Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400 Orsay, France

Acknowledgements

We thank the DISC 2023 anonymous reviewers for their careful reading and comments.

Cite As Get BibTex

Evangelos Bampas, Joffroy Beauquier, Janna Burman, and William Guy--Obé. Treasure Hunt with Volatile Pheromones. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 8:1-8:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.DISC.2023.8

Abstract

In the treasure hunt problem, a team of mobile agents need to locate a single treasure that is hidden in their environment. We consider the problem in the discrete setting of an oriented infinite rectangular grid, where agents are modeled as synchronous identical deterministic time-limited finite-state automata, originating at a rate of one agent per round from the origin. Agents perish τ rounds after their creation, where τ ≥ 1 is a parameter of the model. An algorithm solves the treasure hunt problem if every grid position at distance τ or less from the origin is visited by at least one agent. Agents may communicate only by leaving indistinguishable traces (pheromone) on the nodes of the grid, which can be sensed by agents in adjacent nodes and thus modify their behavior. The novelty of our approach is that, in contrast to existing literature that uses permanent pheromone markers, we assume that pheromone traces evaporate over μ rounds from the moment they were placed on a node, where μ ≥ 1 is another parameter of the model. We look for uniform algorithms that solve the problem without knowledge of the parameter values, and we investigate the implications of this very weak communication mechanism to the treasure hunt problem. We show that, if pheromone persists for at least two rounds (μ ≥ 2), then there exists a treasure hunt algorithm for all values of agent lifetime. We also develop a more sophisticated algorithm that works for all values of μ, hence also for the fastest possible pheromone evaporation of μ = 1, but only if agent lifetime is at least 16.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Mobile Agents
  • Exploration
  • Search
  • Treasure Hunt
  • Pheromone
  • Evaporation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Yehuda Afek, Roman Kecher, and Moshe Sulamy. Optimal pheromone utilization. In 2nd Workshop on Biological Distributed Algorithms (BDA), 2014. Google Scholar
  2. Yehuda Afek, Roman Kecher, and Moshe Sulamy. Optimal and resilient pheromone utilization in ant foraging. CoRR, abs/1507.00772, 2015. URL: https://arxiv.org/abs/1507.00772.
  3. Abhinav Aggarwal and Jared Saia. ANTS on a plane. In Andrea Werneck Richa and Christian Scheideler, editors, Structural Information and Communication Complexity - 27th International Colloquium, SIROCCO 2020, Paderborn, Germany, June 29 - July 1, 2020, Proceedings, volume 12156 of Lecture Notes in Computer Science, pages 47-62. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-54921-3_3.
  4. Noga Alon, Chen Avin, Michal Koucký, Gady Kozma, Zvi Lotker, and Mark R. Tuttle. Many random walks are faster than one. Combinatorics, Probability and Computing, 20(4):481-502, 2011. URL: https://doi.org/10.1017/S0963548311000125.
  5. Steve Alpern, Robbert Fokkink, Leszek Gąsieniec, Roy Lindelauf, and V.S. Subrahmanian, editors. Search Theory: A Game Theoretic Perspective. Springer New York, NY, 2013. URL: https://doi.org/10.1007/978-1-4614-6825-7.
  6. Steve Alpern and Shmuel Gal. The Theory of Search Games and Rendezvous. International Series in Operations Research & Management Science. Springer New York, NY, 2003. URL: https://doi.org/10.1007/b100809.
  7. Spyros Angelopoulos. Online search with a hint. In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages 51:1-51:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ITCS.2021.51.
  8. Spyros Angelopoulos, Diogo Arsénio, and Christoph Dürr. Infinite linear programming and online searching with turn cost. Theoretical Computer Science, 670:11-22, 2017. URL: https://doi.org/10.1016/j.tcs.2017.01.013.
  9. Spyros Angelopoulos, Alejandro López-Ortiz, and Konstantinos Panagiotou. Multi-target ray searching problems. Theoretical Computer Science, 540:2-12, 2014. URL: https://doi.org/10.1016/j.tcs.2014.03.028.
  10. Spyros Angelopoulos and Malachi Voss. Online search with maximum clearance. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 3642-3650. AAAI Press, 2021. URL: https://ojs.aaai.org/index.php/AAAI/article/view/16480.
  11. Ricardo A. Baeza-Yates and René Schott. Parallel searching in the plane. Computational Geometry, 5:143-154, 1995. URL: https://doi.org/10.1016/0925-7721(95)00003-R.
  12. Evangelos Bampas, Jurek Czyzowicz, Leszek Gasieniec, David Ilcinkas, Ralf Klasing, Tomasz Kociumaka, and Dominik Pajak. Linear search by a pair of distinct-speed robots. Algorithmica, 81(1):317-342, 2019. URL: https://doi.org/10.1007/s00453-018-0447-0.
  13. Evangelos Bampas, Jurek Czyzowicz, David Ilcinkas, and Ralf Klasing. Beachcombing on strips and islands. Theoretical Computer Science, 806:236-255, 2020. URL: https://doi.org/10.1016/j.tcs.2019.04.001.
  14. Anatole Beck. On the linear search problem. Israel Journal of Mathematics, 2:221-228, 1964. URL: https://doi.org/10.1007/BF02759737.
  15. Anatole Beck and Donald J. Newman. Yet more on the linear search problem. Israel Journal of Mathematics, 8:419-429, 1970. URL: https://doi.org/10.1007/BF02798690.
  16. Lucas Boczkowski, Uriel Feige, Amos Korman, and Yoav Rodeh. Navigating in trees with permanently noisy advice. ACM Transactions on Algorithms, 17(2):15:1-15:27, 2021. URL: https://doi.org/10.1145/3448305.
  17. Anthony Bonato and Richard J. Nowakowski. The Game of Cops and Robbers on Graphs. American Mathematical Society, 2011. Google Scholar
  18. Sébastien Bouchard, Yoann Dieudonné, Andrzej Pelc, and Franck Petit. Deterministic treasure hunt in the plane with angular hints. Algorithmica, 82(11):3250-3281, 2020. URL: https://doi.org/10.1007/s00453-020-00724-4.
  19. Sébastien Bouchard, Arnaud Labourel, and Andrzej Pelc. Impact of knowledge on the cost of treasure hunt in trees. Networks, 80(1):51-62, 2022. URL: https://doi.org/10.1002/net.22075.
  20. Sebastian Brandt, Klaus-Tycho Foerster, Benjamin Richner, and Roger Wattenhofer. Wireless evacuation on m rays with k searchers. Theoretical Computer Science, 811:56-69, 2020. URL: https://doi.org/10.1016/j.tcs.2018.10.032.
  21. Sebastian Brandt, Jara Uitto, and Roger Wattenhofer. A tight lower bound for semi-synchronous collaborative grid exploration. Distributed Computing, 33(6):471-484, 2020. URL: https://doi.org/10.1007/s00446-020-00369-0.
  22. Marek Chrobak, Leszek Gasieniec, Thomas Gorry, and Russell Martin. Group search on the line. In Giuseppe F. Italiano, Tiziana Margaria-Steffen, Jaroslav Pokorný, Jean-Jacques Quisquater, and Roger Wattenhofer, editors, SOFSEM 2015: Theory and Practice of Computer Science - 41st International Conference on Current Trends in Theory and Practice of Computer Science, Pec pod Sněžkou, Czech Republic, January 24-29, 2015. Proceedings, volume 8939 of Lecture Notes in Computer Science, pages 164-176. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-46078-8_14.
  23. Timothy H. Chung, Geoffrey A. Hollinger, and Volkan Isler. Search and pursuit-evasion in mobile robotics - A survey. Autonomous Robots, 31(4):299-316, 2011. URL: https://doi.org/10.1007/s10514-011-9241-4.
  24. Andrea E. F. Clementi, Francesco D'Amore, George Giakkoupis, and Emanuele Natale. Search via parallel Lévy walks on ℤ². In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC '21: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021, pages 81-91. ACM, 2021. URL: https://doi.org/10.1145/3465084.3467921.
  25. Lihi Cohen, Yuval Emek, Oren Louidor, and Jara Uitto. Exploring an infinite space with finite memory scouts. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 207-224. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.14.
  26. Jared Ray Coleman and Oscar Morales-Ponce. The snow plow problem: Perpetual maintenance by mobile agents on the line. In 24th International Conference on Distributed Computing and Networking, ICDCN 2023, Kharagpur, India, January 4-7, 2023, pages 110-114. ACM, 2023. URL: https://doi.org/10.1145/3571306.3571396.
  27. Andrew Collins, Jurek Czyzowicz, Leszek Gasieniec, Adrian Kosowski, Evangelos Kranakis, Danny Krizanc, Russell Martin, and Oscar Morales-Ponce. Optimal patrolling of fragmented boundaries. In Guy E. Blelloch and Berthold Vöcking, editors, 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA '13, Montreal, QC, Canada - July 23 - 25, 2013, pages 241-250. ACM, 2013. URL: https://doi.org/10.1145/2486159.2486176.
  28. Colin Cooper, Alan M. Frieze, and Tomasz Radzik. Multiple random walks in random regular graphs. SIAM Journal on Discrete Mathematics, 23(4):1738-1761, 2009. URL: https://doi.org/10.1137/080729542.
  29. Jurek Czyzowicz, Leszek Gasieniec, Konstantinos Georgiou, Evangelos Kranakis, and Fraser MacQuarrie. The beachcombers' problem: Walking and searching with mobile robots. Theoretical Computer Science, 608:201-218, 2015. URL: https://doi.org/10.1016/j.tcs.2015.09.011.
  30. Jurek Czyzowicz, Kostantinos Georgiou, and Evangelos Kranakis. Group search and evacuation. In Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors, Distributed Computing by Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes in Computer Science, pages 335-370. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-11072-7_14.
  31. Francesco D'Amore. On the collective behaviors of bio-inspired distributed systems. (Sur les comportements collectifs de systèmes distribués bio-inspirés). PhD thesis, Côte d'Azur University, Nice, France, 2022. URL: https://tel.archives-ouvertes.fr/tel-03906167.
  32. Shantanu Das. Mobile agent rendezvous in a ring using faulty tokens. In Shrisha Rao, Mainak Chatterjee, Prasad Jayanti, C. Siva Ram Murthy, and Sanjoy Kumar Saha, editors, Distributed Computing and Networking, 9th International Conference, ICDCN 2008, Kolkata, India, January 5-8, 2008, volume 4904 of Lecture Notes in Computer Science, pages 292-297. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-77444-0_29.
  33. Shantanu Das, Matús Mihalák, Rastislav Srámek, Elias Vicari, and Peter Widmayer. Rendezvous of mobile agents when tokens fail anytime. In Theodore P. Baker, Alain Bui, and Sébastien Tixeuil, editors, Principles of Distributed Systems, 12th International Conference, OPODIS 2008, Luxor, Egypt, December 15-18, 2008. Proceedings, volume 5401 of Lecture Notes in Computer Science, pages 463-480. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-92221-6_29.
  34. Shantanu Das and Nicola Santoro. Moving and computing models: Agents. In Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors, Distributed Computing by Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes in Computer Science, pages 15-34. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-11072-7_2.
  35. Erik D. Demaine, Sándor P. Fekete, and Shmuel Gal. Online searching with turn cost. Theoretical Computer Science, 361(2-3):342-355, 2006. URL: https://doi.org/10.1016/j.tcs.2006.05.018.
  36. Yoann Dieudonné and Andrzej Pelc. Deterministic network exploration by a single agent with Byzantine tokens. Information Processing Letters, 112(12):467-470, 2012. URL: https://doi.org/10.1016/j.ipl.2012.03.017.
  37. Klim Efremenko and Omer Reingold. How well do random walks parallelize? In Irit Dinur, Klaus Jansen, Joseph Naor, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 12th International Workshop, APPROX 2009, and 13th International Workshop, RANDOM 2009, Berkeley, CA, USA, August 21-23, 2009. Proceedings, volume 5687 of Lecture Notes in Computer Science, pages 476-489. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-03685-9_36.
  38. Robert Elsässer and Thomas Sauerwald. Tight bounds for the cover time of multiple random walks. Theoretical Computer Science, 412(24):2623-2641, 2011. URL: https://doi.org/10.1016/j.tcs.2010.08.010.
  39. Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and Roger Wattenhofer. How many ants does it take to find the food? Theoretical Computer Science, 608:255-267, 2015. URL: https://doi.org/10.1016/j.tcs.2015.05.054.
  40. Yuval Emek, Tobias Langner, Jara Uitto, and Roger Wattenhofer. Solving the ANTS problem with asynchronous finite state machines. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer Science, pages 471-482. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-43951-7_40.
  41. Ofer Feinerman and Amos Korman. Memory lower bounds for randomized collaborative search and implications for biology. In Marcos K. Aguilera, editor, Distributed Computing - 26th International Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012. Proceedings, volume 7611 of Lecture Notes in Computer Science, pages 61-75. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-33651-5_5.
  42. Ofer Feinerman and Amos Korman. The ANTS problem. Distributed Computing, 30(3):149-168, 2017. URL: https://doi.org/10.1007/s00446-016-0285-8.
  43. Ofer Feinerman, Amos Korman, Zvi Lotker, and Jean-Sébastien Sereni. Collaborative search on the plane without communication. In Darek Kowalski and Alessandro Panconesi, editors, ACM Symposium on Principles of Distributed Computing, PODC '12, Funchal, Madeira, Portugal, July 16-18, 2012, pages 77-86. ACM, 2012. URL: https://doi.org/10.1145/2332432.2332444.
  44. Paola Flocchini, Evangelos Kranakis, Danny Krizanc, Flaminia L. Luccio, Nicola Santoro, and Cindy Sawchuk. Mobile agents rendezvous when tokens fail. In Rastislav Kralovic and Ondrej Sýkora, editors, Structural Information and Communication Complexity, 11th International Colloquium , SIROCCO 2004, Smolenice Castle, Slovakia, June 21-23, 2004, Proceedings, volume 3104 of Lecture Notes in Computer Science, pages 161-172. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-27796-5_15.
  45. Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on guaranteed graph searching. Theoretical Computer Science, 399(3):236-245, 2008. URL: https://doi.org/10.1016/j.tcs.2008.02.040.
  46. Pierre Fraigniaud, Amos Korman, and Yoav Rodeh. Parallel Bayesian search with no coordination. Journal of the ACM, 66(3):17:1-17:28, 2019. URL: https://doi.org/10.1145/3304111.
  47. Subir Kumar Ghosh and Rolf Klein. Online algorithms for searching and exploration in the plane. Computer Science Review, 4(4):189-201, 2010. URL: https://doi.org/10.1016/j.cosrev.2010.05.001.
  48. Andrej Ivaskovic, Adrian Kosowski, Dominik Pajak, and Thomas Sauerwald. Multiple random walks on paths and grids. In Heribert Vollmer and Brigitte Vallée, editors, 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017, Hannover, Germany, volume 66 of LIPIcs, pages 44:1-44:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.STACS.2017.44.
  49. Duncan E. Jackson and Francis L.W. Ratnieks. Communication in ants. Current Biology, 16(15):R570-R574, 2006. URL: https://doi.org/10.1016/j.cub.2006.07.015.
  50. Akitoshi Kawamura and Yusuke Kobayashi. Fence patrolling by mobile agents with distinct speeds. Distributed Computing, 28(2):147-154, 2015. URL: https://doi.org/10.1007/s00446-014-0226-3.
  51. Dennis Komm, Rastislav Královic, Richard Královic, and Jasmin Smula. Treasure hunt with advice. In Christian Scheideler, editor, Structural Information and Communication Complexity - 22nd International Colloquium, SIROCCO 2015, Montserrat, Spain, July 14-16, 2015, Post-Proceedings, volume 9439 of Lecture Notes in Computer Science, pages 328-341. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-25258-2_23.
  52. Amos Korman and Yoav Rodeh. Multi-round cooperative search games with multiple players. Journal of Computer and System Sciences, 113:125-149, 2020. URL: https://doi.org/10.1016/j.jcss.2020.05.003.
  53. Tobias Langner, Barbara Keller, Jara Uitto, and Roger Wattenhofer. Overcoming obstacles with ants. In Emmanuelle Anceaume, Christian Cachin, and Maria Gradinariu Potop-Butucaru, editors, 19th International Conference on Principles of Distributed Systems, OPODIS 2015, December 14-17, 2015, Rennes, France, volume 46 of LIPIcs, pages 9:1-9:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPIcs.OPODIS.2015.9.
  54. Tobias Langner, Jara Uitto, David Stolz, and Roger Wattenhofer. Fault-tolerant ANTS. In Fabian Kuhn, editor, Distributed Computing - 28th International Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, volume 8784 of Lecture Notes in Computer Science, pages 31-45. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-45174-8_3.
  55. Christoph Lenzen, Nancy A. Lynch, Calvin Newport, and Tsvetomira Radeva. Searching without communicating: tradeoffs between performance and selection complexity. Distributed Computing, 30(3):169-191, 2017. URL: https://doi.org/10.1007/s00446-016-0283-x.
  56. Christoph Lenzen and Tsvetomira Radeva. The power of pheromones in ant foraging. In 1st Workshop on Biological Distributed Algorithms (BDA), 2013. Google Scholar
  57. Avery Miller and Andrzej Pelc. Tradeoffs between cost and information for rendezvous and treasure hunt. Journal of Parallel and Distributed Computing, 83:159-167, 2015. URL: https://doi.org/10.1016/j.jpdc.2015.06.004.
  58. Paul J. Nahin. Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, 2007. Google Scholar
  59. Andrzej Pelc and Ram Narayan Yadav. Advice complexity of treasure hunt in geometric terrains. Information and Computation, 281:104705, 2021. URL: https://doi.org/10.1016/j.ic.2021.104705.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail