Fast Reconfiguration for Programmable Matter

Authors Irina Kostitsyna, Tom Peters, Bettina Speckmann



PDF
Thumbnail PDF

File

LIPIcs.DISC.2023.27.pdf
  • Filesize: 13.89 MB
  • 21 pages

Document Identifiers

Author Details

Irina Kostitsyna
  • TU Eindhoven, The Netherlands
Tom Peters
  • TU Eindhoven, The Netherlands
Bettina Speckmann
  • TU Eindhoven, The Netherlands

Cite As Get BibTex

Irina Kostitsyna, Tom Peters, and Bettina Speckmann. Fast Reconfiguration for Programmable Matter. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 27:1-27:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.DISC.2023.27

Abstract

The concept of programmable matter envisions a very large number of tiny and simple robot particles forming a smart material. Even though the particles are restricted to local communication, local movement, and simple computation, their actions can nevertheless result in the global change of the material’s physical properties and geometry.
A fundamental algorithmic task for programmable matter is to achieve global shape reconfiguration by specifying local behavior of the particles. In this paper we describe a new approach for shape reconfiguration in the amoebot model. The amoebot model is a distributed model which significantly restricts memory, computing, and communication capacity of the individual particles. Thus the challenge lies in coordinating the actions of particles to produce the desired behavior of the global system.
Our reconfiguration algorithm is the first algorithm that does not use a canonical intermediate configuration when transforming between arbitrary shapes. We introduce new geometric primitives for amoebots and show how to reconfigure particle systems, using these primitives, in a linear number of activation rounds in the worst case. In practice, our method exploits the geometry of the symmetric difference between input and output shape: it minimizes unnecessary disassembly and reassembly of the particle system when the symmetric difference between the initial and the target shapes is small. Furthermore, our reconfiguration algorithm moves the particles over as many parallel shortest paths as the problem instance allows.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Theory of computation → Self-organization
Keywords
  • Programmable matter
  • amoebot model
  • shape reconfiguration

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa. A stochastic approach to shortcut bridging in programmable matter. Natural Computing, 17(4):723-741, 2018. URL: https://doi.org/10.1007/s11047-018-9714-x.
  2. Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM (JACM), 32(4):804-823, 1985. Google Scholar
  3. Sarah Cannon, Joshua J. Daymude, Cem Gökmen, Dana Randall, and Andréa W. Richa. A Local Stochastic Algorithm for Separation in Heterogeneous Self-Organizing Particle Systems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019), volume 145 of Leibniz International Proceedings in Informatics (LIPIcs), pages 54:1-54:22, 2019. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.54.
  4. Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa. A Markov Chain Algorithm for Compression in Self-Organizing Particle Systems. In Proc. ACM Symposium on Principles of Distributed Computing (PODC), pages 279-288, 2016. URL: https://doi.org/10.1145/2933057.2933107.
  5. Kenneth C. Cheung, Erik D. Demaine, Jonathan R. Bachrach, and Saul Griffith. Programmable Assembly With Universally Foldable Strings (Moteins). IEEE Transactions on Robotics, 27(4):718-729, 2011. URL: https://doi.org/10.1109/TRO.2011.2132951.
  6. Joseph C. Culberson and Robert A. Reckhow. Dent Diagrams: A Unified Approach to Polygon Covering Problems. Technical report, University of Alberta, 1987. TR 87-14. Google Scholar
  7. Joshua J. Daymude, Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W. Richa, Christian Scheideler, and Thim Strothmann. On the Runtime of Universal Coating for Programmable Matter. Natural Computing, 17(1):81-96, 2016. URL: https://doi.org/10.1007/s11047-017-9658-6.
  8. Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Christian Scheideler, and Andréa W. Richa. Convex Hull Formation for Programmable Matter. In Proc. 21st International Conference on Distributed Computing and Networking, pages 1-10, 2020. URL: https://doi.org/10.1145/3369740.3372916.
  9. Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. Local Mutual Exclusion for Dynamic, Anonymous, Bounded Memory Message Passing Systems, November 2021. URL: http://arxiv.org/abs/2111.09449.
  10. Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The Canonical Amoebot Model: Algorithms and Concurrency Control. In 35th International Symposium on Distributed Computing (DISC), volume 209 of Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1-20:19, 2021. URL: https://doi.org/10.4230/LIPIcs.DISC.2021.20.
  11. Hooman R. Dehkordi, Fabrizio Frati, and Joachim Gudmundsson. Increasing-Chord Graphs On Point Sets. In Proc. International Symposium on Graph Drawing (GD), LNCS 8871, pages 464-475, 2014. URL: https://doi.org/10.1007/978-3-662-45803-7_39.
  12. Erik D. Demaine, Jacob Hendricks, Meagan Olsen, Matthew J. Patitz, Trent A. Rogers, Nicolas Schabanel, Shinnosuke Seki, and Hadley Thomas. Know When to Fold 'Em: Self-assembly of Shapes by Folding in Oritatami. In DNA Computing and Molecular Programming, pages 19-36, 2018. URL: https://doi.org/10.1007/978-3-030-00030-1_2.
  13. Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim Strothmann. Brief announcement: Amoebot - A New Model for Programmable Matter. In Proc. 26th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 220-222, 2014. URL: https://doi.org/10.1145/2612669.2612712.
  14. Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim Strothmann. Universal Shape Formation for Programmable Matter. In Proc. 28th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 289-299, 2016. URL: https://doi.org/10.1145/2935764.2935784.
  15. Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W. Richa, and Christian Scheideler. Leader Election and Shape Formation with Self-organizing Programmable Matter. In Proc. International Workshop on DNA-Based Computing (DNA), LNCS 9211, pages 117-132, 2015. URL: https://doi.org/10.1007/978-3-319-21999-8_8.
  16. Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko Yamauchi. Shape formation by programmable particles. Distributed Computing, 33:69-101, 2020. URL: https://doi.org/10.1007/s00446-019-00350-6.
  17. Fabien Dufoulon, Shay Kutten, and William K. Moses Jr. Efficient Deterministic Leader Election for Programmable Matter. In Proc. 2021 ACM Symposium on Principles of Distributed Computing, pages 103-113, 2021. URL: https://doi.org/10.1145/3465084.3467900.
  18. Cody Geary, Paul W. K. Rothemund, and Ebbe S. Andersen. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science, 345(6198):799-804, 2014. URL: https://doi.org/10.1126/science.1253920.
  19. Subir Kumar Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, 2007. URL: https://doi.org/10.1017/CBO9780511543340.
  20. Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, Christian Scheideler, and Thim Strothmann. Forming Tile Shapes with Simple Robots. In Proc. International Conference on DNA Computing and Molecular Programming (DNA), pages 122-138, 2018. URL: https://doi.org/10.1007/978-3-030-00030-1_8.
  21. Irina Kostitsyna, Tom Peters, and Bettina Speckmann. Brief announcement: An effective geometric communication structure for programmable matter. In 36th International Symposium on Distributed Computing (DISC 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022. Google Scholar
  22. Irina Kostitsyna, Tom Peters, and Bettina Speckmann. Fast reconfiguration for programmable matter. arxiv, August 2023. URL: https://arxiv.org/abs/2202.11663.
  23. Joseph S. B. Mitchell. A new algorithm for shortest paths among obstacles in the plane. Annals of Mathematics and Artificial Intelligence, 3(1):83-105, 1991. URL: https://doi.org/10.1007/BF01530888.
  24. Andre Naz, Benoit Piranda, Julien Bourgeois, and Seth Copen Goldstein. A distributed self-reconfiguration algorithm for cylindrical lattice-based modular robots. In Proc. 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA), pages 254-263, 2016. URL: https://doi.org/10.1109/NCA.2016.7778628.
  25. Matthew J. Patitz. An introduction to tile-based self-assembly and a survey of recent results. Natural Computing, 13(2):195-224, 2014. URL: https://doi.org/10.1007/s11047-013-9379-4.
  26. Benoit Piranda and Julien Bourgeois. Designing a quasi-spherical module for a huge modular robot to create programmable matter. Autonomous Robots, 42(8):1619-1633, 2018. URL: https://doi.org/10.1007/s10514-018-9710-0.
  27. Alexandra Porter and Andrea Richa. Collaborative Computation in Self-organizing Particle Systems. In Proc. International Conference on Unconventional Computation and Natural Computation (UCNC), LNCS 10867, pages 188-203, 2018. URL: https://doi.org/10.1007/978-3-319-92435-9_14.
  28. Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In Proc. 4th Conference on Innovations in Theoretical Computer Science (ITCS), pages 353-354, 2013. URL: https://doi.org/10.1145/2422436.2422476.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail