Search Results

Documents authored by Agrawal, Rohit


Document
RANDOM
Samplers and Extractors for Unbounded Functions

Authors: Rohit Agrawal

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
Błasiok (SODA'18) recently introduced the notion of a subgaussian sampler, defined as an averaging sampler for approximating the mean of functions f from {0,1}^m to the real numbers such that f(U_m) has subgaussian tails, and asked for explicit constructions. In this work, we give the first explicit constructions of subgaussian samplers (and in fact averaging samplers for the broader class of subexponential functions) that match the best known constructions of averaging samplers for [0,1]-bounded functions in the regime of parameters where the approximation error epsilon and failure probability delta are subconstant. Our constructions are established via an extension of the standard notion of randomness extractor (Nisan and Zuckerman, JCSS'96) where the error is measured by an arbitrary divergence rather than total variation distance, and a generalization of Zuckerman’s equivalence (Random Struct. Alg.'97) between extractors and samplers. We believe that the framework we develop, and specifically the notion of an extractor for the Kullback-Leibler (KL) divergence, are of independent interest. In particular, KL-extractors are stronger than both standard extractors and subgaussian samplers, but we show that they exist with essentially the same parameters (constructively and non-constructively) as standard extractors.

Cite as

Rohit Agrawal. Samplers and Extractors for Unbounded Functions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 59:1-59:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{agrawal:LIPIcs.APPROX-RANDOM.2019.59,
  author =	{Agrawal, Rohit},
  title =	{{Samplers and Extractors for Unbounded Functions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{59:1--59:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.59},
  URN =		{urn:nbn:de:0030-drops-112749},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.59},
  annote =	{Keywords: averaging samplers, subgaussian samplers, randomness extractors, Kullback-Leibler divergence}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail