Search Results

Documents authored by Aiger, Dror


Document
General Techniques for Approximate Incidences and Their Application to the Camera Posing Problem

Authors: Dror Aiger, Haim Kaplan, Efi Kokiopoulou, Micha Sharir, and Bernhard Zeisl

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We consider the classical camera pose estimation problem that arises in many computer vision applications, in which we are given n 2D-3D correspondences between points in the scene and points in the camera image (some of which are incorrect associations), and where we aim to determine the camera pose (the position and orientation of the camera in the scene) from this data. We demonstrate that this posing problem can be reduced to the problem of computing epsilon-approximate incidences between two-dimensional surfaces (derived from the input correspondences) and points (on a grid) in a four-dimensional pose space. Similar reductions can be applied to other camera pose problems, as well as to similar problems in related application areas. We describe and analyze three techniques for solving the resulting epsilon-approximate incidences problem in the context of our camera posing application. The first is a straightforward assignment of surfaces to the cells of a grid (of side-length epsilon) that they intersect. The second is a variant of a primal-dual technique, recently introduced by a subset of the authors [Aiger et al., 2017] for different (and simpler) applications. The third is a non-trivial generalization of a data structure Fonseca and Mount [Da Fonseca and Mount, 2010], originally designed for the case of hyperplanes. We present and analyze this technique in full generality, and then apply it to the camera posing problem at hand. We compare our methods experimentally on real and synthetic data. Our experiments show that for the typical values of n and epsilon, the primal-dual method is the fastest, also in practice.

Cite as

Dror Aiger, Haim Kaplan, Efi Kokiopoulou, Micha Sharir, and Bernhard Zeisl. General Techniques for Approximate Incidences and Their Application to the Camera Posing Problem. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{aiger_et_al:LIPIcs.SoCG.2019.8,
  author =	{Aiger, Dror and Kaplan, Haim and Kokiopoulou, Efi and Sharir, Micha and Zeisl, Bernhard},
  title =	{{General Techniques for Approximate Incidences and Their Application to the Camera Posing Problem}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{8:1--8:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.8},
  URN =		{urn:nbn:de:0030-drops-104129},
  doi =		{10.4230/LIPIcs.SoCG.2019.8},
  annote =	{Keywords: Camera positioning, Approximate incidences, Incidences}
}
Document
Output Sensitive Algorithms for Approximate Incidences and Their Applications

Authors: Dror Aiger, Haim Kaplan, and Micha Sharir

Published in: LIPIcs, Volume 87, 25th Annual European Symposium on Algorithms (ESA 2017)


Abstract
An epsilon-approximate incidence between a point and some geometric object (line, circle, plane, sphere) occurs when the point and the object lie at distance at most epsilon from each other. Given a set of points and a set of objects, computing the approximate incidences between them is a major step in many database and web-based applications in computer vision and graphics, including robust model fitting, approximate point pattern matching, and estimating the fundamental matrix in epipolar (stereo) geometry. In a typical approximate incidence problem of this sort, we are given a set P of m points in two or three dimensions, a set S of n objects (lines, circles, planes, spheres), and an error parameter epsilon>0, and our goal is to report all pairs (p,s) in P times S that lie at distance at most epsilon from one another. We present efficient output-sensitive approximation algorithms for quite a few cases, including points and lines or circles in the plane, and points and planes, spheres, lines, or circles in three dimensions. Several of these cases arise in the applications mentioned above. Our algorithms report all pairs at distance <= epsilon, but may also report additional pairs, all of which are guaranteed to be at distance at most alphaepsilon, for some constant alpha>1. Our algorithms are based on simple primal and dual grid decompositions and are easy to implement. We note though that (a) the use of duality, which leads to significant improvements in the overhead cost of the algorithms, appears to be novel for this kind of problems; (b) the correct choice of duality in some of these problems is fairly intricate and requires some care; and (c) the correctness and performance analysis of the algorithms (especially in the more advanced versions) is fairly non-trivial. We analyze our algorithms and prove guaranteed upper bounds on their running time and on the "distortion" parameter alpha. We also briefly describe the motivating applications, and show how they can effectively exploit our solutions. The superior theoretical bounds on the performance of our algorithms, and their simplicity, make them indeed ideal tools for these applications. In a series of preliminary experimentations (not included in this abstract), we substantiate this feeling, and show that our algorithms lead in practice to significant improved performance of the aforementioned applications.

Cite as

Dror Aiger, Haim Kaplan, and Micha Sharir. Output Sensitive Algorithms for Approximate Incidences and Their Applications. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{aiger_et_al:LIPIcs.ESA.2017.5,
  author =	{Aiger, Dror and Kaplan, Haim and Sharir, Micha},
  title =	{{Output Sensitive Algorithms for Approximate Incidences and Their Applications}},
  booktitle =	{25th Annual European Symposium on Algorithms (ESA 2017)},
  pages =	{5:1--5:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-049-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{87},
  editor =	{Pruhs, Kirk and Sohler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.5},
  URN =		{urn:nbn:de:0030-drops-78224},
  doi =		{10.4230/LIPIcs.ESA.2017.5},
  annote =	{Keywords: Approximate incidences, near-neighbor reporting, duality, grid-based approximation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail