Search Results

Documents authored by Alexandru, Cezar-Mihail


Document
Interval Selection in Sliding Windows

Authors: Cezar-Mihail Alexandru and Christian Konrad

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We initiate the study of the Interval Selection problem in the (streaming) sliding window model of computation. In this problem, an algorithm receives a potentially infinite stream of intervals on the line, and the objective is to maintain at every moment an approximation to a largest possible subset of disjoint intervals among the L most recent intervals, for some integer L. We give the following results: 1) In the unit-length intervals case, we give a 2-approximation sliding window algorithm with space Õ(|OPT|), and we show that any sliding window algorithm that computes a (2-ε)-approximation requires space Ω(L), for any ε > 0. 2) In the arbitrary-length case, we give a (11/3+ε)-approximation sliding window algorithm with space Õ(|OPT|), for any constant ε > 0, which constitutes our main result. We also show that space Ω(L) is needed for algorithms that compute a (2.5-ε)-approximation, for any ε > 0. Our main technical contribution is an improvement over the smooth histogram technique, which consists of running independent copies of a traditional streaming algorithm with different start times. By employing the one-pass 2-approximation streaming algorithm by Cabello and Pérez-Lantero [Theor. Comput. Sci. '17] for Interval Selection on arbitrary-length intervals as the underlying algorithm, the smooth histogram technique immediately yields a (4+ε)-approximation in this setting. Our improvement is obtained by forwarding the structure of the intervals identified in a run to the subsequent run, which constrains the shape of an optimal solution and allows us to target optimal intervals differently.

Cite as

Cezar-Mihail Alexandru and Christian Konrad. Interval Selection in Sliding Windows. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alexandru_et_al:LIPIcs.ESA.2024.8,
  author =	{Alexandru, Cezar-Mihail and Konrad, Christian},
  title =	{{Interval Selection in Sliding Windows}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{8:1--8:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.8},
  URN =		{urn:nbn:de:0030-drops-210795},
  doi =		{10.4230/LIPIcs.ESA.2024.8},
  annote =	{Keywords: Sliding window algorithms, Streaming algorithms, Interval selection}
}
Document
Improved Weighted Matching in the Sliding Window Model

Authors: Cezar-Mihail Alexandru, Pavel Dvořák, Christian Konrad, and Kheeran K. Naidu

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
We consider the Maximum-weight Matching (MWM) problem in the streaming sliding window model of computation. In this model, the input consists of a sequence of weighted edges on a given vertex set V of size n. The objective is to maintain an approximation of a maximum-weight matching in the graph spanned by the L most recent edges, for some integer L, using as little space as possible. Prior to our work, the state-of-the-art results were a (3.5+ε)-approximation algorithm for MWM by Biabani et al. [ISAAC'21] and a (3+ε)-approximation for (unweighted) Maximum Matching (MM) by Crouch et al. [ESA'13]. Both algorithms use space Õ(n). We give the following results: 1) We give a (2+ε)-approximation algorithm for MWM with space Õ(√{nL}). Under the reasonable assumption that the graphs spanned by the edges in each sliding window are simple, our algorithm uses space Õ(n √n). 2) In the Õ(n) space regime, we give a (3+ε)-approximation algorithm for MWM, thereby closing the gap between the best-known approximation ratio for MWM and MM. Similar to Biabani et al.’s MWM algorithm, both our algorithms execute multiple instances of the (2+ε)-approximation Õ(n)-space streaming algorithm for MWM by Paz and Schwartzman [SODA'17] on different portions of the stream. Our improvements are obtained by selecting these substreams differently. Furthermore, our (2+ε)-approximation algorithm runs the Paz-Schwartzman algorithm in reverse direction over some parts of the stream, and in forward direction over other parts, which allows for an improved approximation guarantee at the cost of increased space requirements.

Cite as

Cezar-Mihail Alexandru, Pavel Dvořák, Christian Konrad, and Kheeran K. Naidu. Improved Weighted Matching in the Sliding Window Model. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 6:1-6:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{alexandru_et_al:LIPIcs.STACS.2023.6,
  author =	{Alexandru, Cezar-Mihail and Dvo\v{r}\'{a}k, Pavel and Konrad, Christian and Naidu, Kheeran K.},
  title =	{{Improved Weighted Matching in the Sliding Window Model}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{6:1--6:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.6},
  URN =		{urn:nbn:de:0030-drops-176585},
  doi =		{10.4230/LIPIcs.STACS.2023.6},
  annote =	{Keywords: Sliding window algorithms, Streaming algorithms, Maximum-weight matching}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail