Search Results

Documents authored by Allamigeon, Xavier


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Universal Complexity Bounds Based on Value Iteration and Application to Entropy Games

Authors: Xavier Allamigeon, Stéphane Gaubert, Ricardo D. Katz, and Mateusz Skomra

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We develop value iteration-based algorithms to solve in a unified manner different classes of combinatorial zero-sum games with mean-payoff type rewards. These algorithms rely on an oracle, evaluating the dynamic programming operator up to a given precision. We show that the number of calls to the oracle needed to determine exact optimal (positional) strategies is, up to a factor polynomial in the dimension, of order R/sep, where the "separation" sep is defined as the minimal difference between distinct values arising from strategies, and R is a metric estimate, involving the norm of approximate sub and super-eigenvectors of the dynamic programming operator. We illustrate this method by two applications. The first one is a new proof, leading to improved complexity estimates, of a theorem of Boros, Elbassioni, Gurvich and Makino, showing that turn-based mean payoff games with a fixed number of random positions can be solved in pseudo-polynomial time. The second one concerns entropy games, a model introduced by Asarin, Cervelle, Degorre, Dima, Horn and Kozyakin. The rank of an entropy game is defined as the maximal rank among all the ambiguity matrices determined by strategies of the two players. We show that entropy games with a fixed rank, in their original formulation, can be solved in polynomial time, and that an extension of entropy games incorporating weights can be solved in pseudo-polynomial time under the same fixed rank condition.

Cite as

Xavier Allamigeon, Stéphane Gaubert, Ricardo D. Katz, and Mateusz Skomra. Universal Complexity Bounds Based on Value Iteration and Application to Entropy Games. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 110:1-110:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{allamigeon_et_al:LIPIcs.ICALP.2022.110,
  author =	{Allamigeon, Xavier and Gaubert, St\'{e}phane and Katz, Ricardo D. and Skomra, Mateusz},
  title =	{{Universal Complexity Bounds Based on Value Iteration and Application to Entropy Games}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{110:1--110:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.110},
  URN =		{urn:nbn:de:0030-drops-164511},
  doi =		{10.4230/LIPIcs.ICALP.2022.110},
  annote =	{Keywords: Mean-payoff games, entropy games, value iteration, Perron root, separation bounds, parameterized complexity}
}
Document
The Tropical Double Description Method

Authors: Xavier Allamigeon, Stéphane Gaubert, and Éric Goubault

Published in: LIPIcs, Volume 5, 27th International Symposium on Theoretical Aspects of Computer Science (2010)


Abstract
We develop a tropical analogue of the classical double description method allowing one to compute an internal representation (in terms of vertices) of a polyhedron defined externally (by inequalities). The heart of the tropical algorithm is a characterization of the extreme points of a polyhedron in terms of a system of constraints which define it. We show that checking the extremality of a point reduces to checking whether there is only one minimal strongly connected component in an hypergraph. The latter problem can be solved in almost linear time, which allows us to eliminate quickly redundant generators. We report extensive tests (including benchmarks from an application to static analysis) showing that the method outperforms experimentally the previous ones by orders of magnitude. The present tools also lead to worst case bounds which improve the ones provided by previous methods.

Cite as

Xavier Allamigeon, Stéphane Gaubert, and Éric Goubault. The Tropical Double Description Method. In 27th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 5, pp. 47-58, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{allamigeon_et_al:LIPIcs.STACS.2010.2443,
  author =	{Allamigeon, Xavier and Gaubert, St\'{e}phane and Goubault, \'{E}ric},
  title =	{{The Tropical Double Description Method}},
  booktitle =	{27th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{47--58},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-16-3},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{5},
  editor =	{Marion, Jean-Yves and Schwentick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2443},
  URN =		{urn:nbn:de:0030-drops-24435},
  doi =		{10.4230/LIPIcs.STACS.2010.2443},
  annote =	{Keywords: Convexity in tropical algebra, algorithmics and combinatorics of tropical polyhedra, computational geometry, discrete event systems, static analysis}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail